|
- from abp.graphstate import GraphState
- from abp.qi import CircuitModel
- from abp import clifford
- import numpy as np
- import random
-
- REPEATS = 10
-
- def test_hadamard_only_multiqubit(n=6):
- """ A multi qubit test with Hadamards only"""
- for qqq in range(REPEATS):
- g = GraphState(range(n))
- c = CircuitModel(n)
-
- for i in range(n):
- g.act_hadamard(i)
- c.act_hadamard(i)
-
- assert g.to_state_vector() == c
-
- for i in range(100):
- a, b = np.random.randint(0, n - 1, 2)
- if a != b:
- g.act_cz(a, b)
- c.act_cz(a, b)
-
- assert g.to_state_vector() == c
-
-
- def test_all_multiqubit(n=4):
- """ A multi qubit test with arbitrary local rotations """
- g = GraphState(range(n))
- c = CircuitModel(n)
- for i in range(10):
- qubit = np.random.randint(0, n - 1)
- rotation = np.random.randint(0, 24 - 1)
- g.act_local_rotation(qubit, rotation)
- c.act_local_rotation(qubit, clifford.unitaries[rotation])
-
- assert g.to_state_vector() == c
-
- for i in range(100):
- a, b = np.random.randint(0, n-1, 2)
- if a != b:
- g.act_cz(a, b)
- c.act_cz(a, b)
- assert np.allclose(np.sum(np.abs(c.state)**2), 1)
- assert np.allclose(np.sum(np.abs(g.to_state_vector().state)**2), 1)
-
- if not g.to_state_vector() == c:
- print g
- print a, b
- print "Circuit:"
- print g.to_state_vector()
- print "Graph:"
- print c
- raise ValueError
-
- assert g.to_state_vector() == c
|