Anders and Briegel in Python
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

60 rindas
1.6KB

  1. from abp.graphstate import GraphState
  2. from abp.qi import CircuitModel
  3. from abp import clifford
  4. import numpy as np
  5. import random
  6. REPEATS = 10
  7. def test_hadamard_only_multiqubit(n=6):
  8. """ A multi qubit test with Hadamards only"""
  9. for qqq in range(REPEATS):
  10. g = GraphState(range(n))
  11. c = CircuitModel(n)
  12. for i in range(n):
  13. g.act_hadamard(i)
  14. c.act_hadamard(i)
  15. assert g.to_state_vector() == c
  16. for i in range(100):
  17. a, b = np.random.randint(0, n - 1, 2)
  18. if a != b:
  19. g.act_cz(a, b)
  20. c.act_cz(a, b)
  21. assert g.to_state_vector() == c
  22. def test_all_multiqubit(n=4):
  23. """ A multi qubit test with arbitrary local rotations """
  24. g = GraphState(range(n))
  25. c = CircuitModel(n)
  26. for i in range(10):
  27. qubit = np.random.randint(0, n - 1)
  28. rotation = np.random.randint(0, 24 - 1)
  29. g.act_local_rotation(qubit, rotation)
  30. c.act_local_rotation(qubit, clifford.unitaries[rotation])
  31. assert g.to_state_vector() == c
  32. for i in range(100):
  33. a, b = np.random.randint(0, n-1, 2)
  34. if a != b:
  35. g.act_cz(a, b)
  36. c.act_cz(a, b)
  37. assert np.allclose(np.sum(np.abs(c.state)**2), 1)
  38. assert np.allclose(np.sum(np.abs(g.to_state_vector().state)**2), 1)
  39. if not g.to_state_vector() == c:
  40. print g
  41. print a, b
  42. print "Circuit:"
  43. print g.to_state_vector()
  44. print "Graph:"
  45. print c
  46. raise ValueError
  47. assert g.to_state_vector() == c