Anders and Briegel in Python
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Pete Shadbolt cd589612b2 Move DETERMINISTIC to a library setting 7 years ago
abp Move DETERMINISTIC to a library setting 7 years ago
bin Update doc version 7 years ago
doc Bump version: 0.4.20 → 0.4.21 7 years ago
examples Tidy up examples, remove images from docs & readme 7 years ago
tests Move DETERMINISTIC to a library setting 7 years ago
.bumpversion.cfg Bump version: 0.4.20 → 0.4.21 7 years ago
.gitignore Update version to 0.4.3 7 years ago
MANIFEST.in Pratting with MANIFEST 7 years ago
README.md Bump version: 0.4.20 → 0.4.21 7 years ago
TODO.mkd Makefiles 7 years ago
makefile I think you no longer have to register with pypi 7 years ago
setup.py Bump version: 0.4.20 → 0.4.21 7 years ago

README.md

abp 0.4.21

Python port of Anders and Briegel’ s method for fast simulation of Clifford circuits. You can read the full documentation here.

Installation

It's easiest to install with pip:

$ pip install --user abp==0.4.21

Or clone and install in develop mode:

$ git clone https://github.com/peteshadbolt/abp.git
$ cd abp
$ python setup.py develop --user
$ python setup.py develop --user --prefix=  # Might be required on OSX

Visualization

abp comes with a tool to visualize graph states in a web browser. It uses a client-server architecture.

First, run abpserver in a terminal:

$ abpserver
Listening on port 5000 for clients..

Then browse to http://localhost:5001/. Alternatively, abpserver -v will automatically pop a browser window.

Now, in another terminal, use abp.fancy.GraphState to run a Clifford circuit:

>>> from abp.fancy import GraphState
>>> g = GraphState(10)
>>> for i in range(10):
...     g.act_hadamard(i)
... 
>>> g.update()
>>> for i in range(9):
...     g.act_cz(i, i+1)
... 
>>> g.update()

And you should see a visualization of the state.

Testing

abp has a bunch of tests. You can run them all with nose:

$ nosetests
53 tests run in 39.5 seconds (53 tests passed)

Currently I use some reference implementations of chp and graphsim which you won't have installed, so some tests will be skipped. That's expected.