Browse Source

Add clifford tests back in. We are test passing baby

master
Pete Shadbolt 8 years ago
parent
commit
fbed23eaea
3 changed files with 55 additions and 2 deletions
  1. +1
    -1
      abp/clifford.py
  2. +2
    -0
      abp/qi.py
  3. +52
    -1
      tests/test_clifford.py

+ 1
- 1
abp/clifford.py View File

@@ -8,7 +8,7 @@ This program generates lookup tables
import os, json
from functools import reduce
import itertools as it
from . import qi
import qi
import numpy as np
import tempfile
from tqdm import tqdm


+ 2
- 0
abp/qi.py View File

@@ -41,3 +41,5 @@ nobond = np.kron(plus, plus)
common_us = id, px, py, pz, ha, ph, sqz, msqz, sqy, msqy, sqx, msqx
names = "identity", "px", "py", "pz", "hadamard", "phase", "sqz", "msqz", "sqy", "msqy", "sqx", "msqx"
by_name = dict(zip(names, common_us))

paulis = px, py, pz

+ 52
- 1
tests/test_clifford.py View File

@@ -2,7 +2,58 @@ from numpy import *
from scipy.linalg import sqrtm
from tqdm import tqdm
import itertools as it

from abp import clifford
from abp import qi


def identify_pauli(m):
""" Given a signed Pauli matrix, name it. """
for sign in (+1, -1):
for pauli_label, pauli in zip("xyz", qi.paulis):
if allclose(sign * pauli, m):
return sign, pauli_label


def _test_find():
""" Test that slightly suspicious function """
assert lc.find(id, lc.unitaries) == 0
assert lc.find(px, lc.unitaries) == 1
assert lc.find(exp(1j*pi/4.)*ha, lc.unitaries) == 4

def get_action(u):
""" What does this unitary operator do to the Paulis? """
return [identify_pauli(u.dot(p.dot(qi.hermitian_conjugate(u)))) for p in qi.paulis]


def format_action(action):
return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)


def test_we_have_24_matrices():
""" Check that we have 24 unique actions on the Bloch sphere """
actions = set(tuple(get_action(u)) for u in clifford.unitaries)
assert len(set(actions)) == 24


def test_we_have_all_useful_gates():
""" Check that all the interesting gates are included up to a global phase """
for name, u in qi.by_name.items():
clifford.find_clifford(u, clifford.unitaries)


def _test_group():
""" Test we are really in a group """
matches = set()
for a, b in tqdm(it.combinations(clifford.unitaries, 2), "Testing this is a group"):
i, phase = clifford.find_clifford(a.dot(b), clifford.unitaries)
matches.add(i)
assert len(matches)==24


def test_conjugation_table():
""" Check that the table of Hermitian conjugates is okay """
assert len(set(clifford.conjugation_table))==24

def test_times_table():
""" Check the times table """
assert clifford.times_table[0][4]==4

Loading…
Cancel
Save