|
- from numpy import *
- from scipy.linalg import sqrtm
- from tqdm import tqdm
- import itertools as it
- from abp import clifford
- from abp import qi
-
-
- def identify_pauli(m):
- """ Given a signed Pauli matrix, name it. """
- for sign in (+1, -1):
- for pauli_label, pauli in zip("xyz", qi.paulis):
- if allclose(sign * pauli, m):
- return sign, pauli_label
-
-
- def _test_find():
- """ Test that slightly suspicious function """
- assert lc.find(id, lc.unitaries) == 0
- assert lc.find(px, lc.unitaries) == 1
- assert lc.find(exp(1j*pi/4.)*ha, lc.unitaries) == 4
-
- def get_action(u):
- """ What does this unitary operator do to the Paulis? """
- return [identify_pauli(u.dot(p.dot(qi.hermitian_conjugate(u)))) for p in qi.paulis]
-
-
- def format_action(action):
- return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)
-
-
- def test_we_have_24_matrices():
- """ Check that we have 24 unique actions on the Bloch sphere """
- actions = set(tuple(get_action(u)) for u in clifford.unitaries)
- assert len(set(actions)) == 24
-
-
- def test_we_have_all_useful_gates():
- """ Check that all the interesting gates are included up to a global phase """
- for name, u in qi.by_name.items():
- clifford.find_clifford(u, clifford.unitaries)
-
-
- def _test_group():
- """ Test we are really in a group """
- matches = set()
- for a, b in tqdm(it.combinations(clifford.unitaries, 2), "Testing this is a group"):
- i, phase = clifford.find_clifford(a.dot(b), clifford.unitaries)
- matches.add(i)
- assert len(matches)==24
-
-
- def test_conjugation_table():
- """ Check that the table of Hermitian conjugates is okay """
- assert len(set(clifford.conjugation_table))==24
-
- def test_times_table():
- """ Check the times table """
- assert clifford.times_table[0][4]==4
|