|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- import numpy as np
- from tqdm import tqdm
- import itertools as it
- from abp import clifford
- from abp import build_tables
- from abp import qi
- from nose.tools import raises
- from anders_briegel import graphsim
-
-
- def identify_pauli(m):
- """ Given a signed Pauli matrix, name it. """
- for sign in (+1, -1):
- for pauli_label, pauli in zip("xyz", qi.paulis):
- if np.allclose(sign * pauli, m):
- return sign, pauli_label
-
-
- def test_find_clifford():
- """ Test that slightly suspicious function """
- assert build_tables.find_clifford(qi.id, clifford.unitaries) == 0
- assert build_tables.find_clifford(qi.px, clifford.unitaries) == 1
-
-
- @raises(IndexError)
- def test_find_non_clifford():
- """ Test that looking for a non-Clifford gate fails """
- build_tables.find_clifford(qi.t, clifford.unitaries)
-
-
- def get_action(u):
- """ What does this unitary operator do to the Paulis? """
- return [identify_pauli(u.dot(p.dot(qi.hermitian_conjugate(u)))) for p in qi.paulis]
-
-
- def format_action(action):
- return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)
-
-
- def test_we_have_24_matrices():
- """ Check that we have 24 unique actions on the Bloch sphere """
- actions = set(tuple(get_action(u)) for u in clifford.unitaries)
- assert len(set(actions)) == 24
-
-
- def test_we_have_all_useful_gates():
- """ Check that all the interesting gates are included up to a global phase """
- for name, u in qi.by_name.items():
- build_tables.find_clifford(u, clifford.unitaries)
-
-
- def test_group():
- """ Test we are really in a group """
- matches = set()
- for a, b in tqdm(it.combinations(clifford.unitaries, 2), "Testing this is a group"):
- i = build_tables.find_clifford(a.dot(b), clifford.unitaries)
- matches.add(i)
- assert len(matches) == 24
-
-
- def test_conjugation_table():
- """ Check that the table of Hermitian conjugates is okay """
- assert len(set(clifford.conjugation_table)) == 24
-
-
- def test_cz_table_makes_sense():
- """ Test the CZ table is symmetric """
- hadamard = clifford.by_name["hadamard"]
- assert all(clifford.cz_table[0, 0, 0] == [1, 0, 0])
- assert all(clifford.cz_table[1, 0, 0] == [0, 0, 0])
- assert all(
- clifford.cz_table[0, hadamard, hadamard] == [0, hadamard, hadamard])
-
-
- def test_commuters():
- """ Test that commutation is good """
- assert len(build_tables.get_commuters(clifford.unitaries)) == 4
-
-
- def test_conjugation():
- """ Test that clifford.conugate() agrees with graphsim.LocCliffOp.conjugate """
- for operation_index, transform_index in it.product(range(4), range(24)):
- transform = graphsim.LocCliffOp(transform_index)
- operation = graphsim.LocCliffOp(operation_index)
-
- phase = operation.conjugate(transform).ph
- phase = [1, 0, -1][phase]
- new_operation = operation.op
-
- NEW_OPERATION, PHASE = clifford.conjugate(
- operation_index, transform_index)
- assert new_operation == NEW_OPERATION
- assert PHASE == phase
-
-
- def test_cz_table():
- """ Does the CZ code work good? """
- state_table = build_tables.get_state_table(clifford.unitaries)
-
- rows = it.product([0, 1], it.combinations_with_replacement(range(24), 2))
-
- for bond, (c1, c2) in rows:
-
- # Pick the input state
- input_state = state_table[bond, c1, c2]
-
- # Go and compute the output
- computed_output = np.dot(qi.cz, input_state)
- computed_output = qi.normalize_global_phase(computed_output)
-
- # Now look up the answer in the table
- bondp, c1p, c2p = clifford.cz_table[bond, c1, c2]
- table_output = state_table[bondp, c1p, c2p]
-
- assert np.allclose(computed_output, table_output)
-
|