|
|
@@ -1,22 +1,43 @@ |
|
|
|
import cv2 |
|
|
|
import numpy as np |
|
|
|
import math |
|
|
|
import itertools as it |
|
|
|
|
|
|
|
DENSITY = 5 |
|
|
|
RED = [0, 0, 255] |
|
|
|
N_COLORS = 3 |
|
|
|
|
|
|
|
|
|
|
|
def draw_rectangles(frame): |
|
|
|
""" Draw some rectangles on top of the image """ |
|
|
|
def draw_rectangle(frame, sp, ep): |
|
|
|
""" Draw a rectangle on the frame """ |
|
|
|
return cv2.rectangle(frame, sp, ep, RED) |
|
|
|
|
|
|
|
|
|
|
|
def analyze_block(frame, sp, ep): |
|
|
|
""" Analyze a block """ |
|
|
|
block = np.float32(frame[sp[1]:ep[1], sp[0]:ep[0], 0:3]) |
|
|
|
block = block.reshape((-1, 3)) |
|
|
|
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 10, .2) |
|
|
|
compactness, labels, palette = cv2.kmeans(block, N_COLORS, None, criteria, |
|
|
|
2, cv2.KMEANS_RANDOM_CENTERS) |
|
|
|
unique, counts = np.unique(labels.flatten(), return_counts=True) |
|
|
|
for index, count in zip(unique, counts): |
|
|
|
print(index, count, palette[index]) |
|
|
|
return frame |
|
|
|
|
|
|
|
|
|
|
|
def analyze(frame): |
|
|
|
""" Analyze the full frame """ |
|
|
|
height, width, d = frame.shape |
|
|
|
n = DENSITY |
|
|
|
m = math.ceil(n * (height / width)) |
|
|
|
dx = width / n |
|
|
|
dy = height / m |
|
|
|
for x, y in it.product(range(n), range(n)): |
|
|
|
for x, y in it.product(range(n), range(m)): |
|
|
|
sp = (int(x * dx), int(y * dy)) |
|
|
|
ep = (int(x * dx + dx), int(y * dy + dy)) |
|
|
|
frame = cv2.rectangle(frame, sp, ep, (255, 0, 0)) |
|
|
|
frame = draw_rectangle(frame, sp, ep) |
|
|
|
frame = analyze_block(frame, sp, ep) |
|
|
|
return frame |
|
|
|
|
|
|
|
|
|
|
@@ -25,7 +46,7 @@ if __name__ == '__main__': |
|
|
|
|
|
|
|
while True: |
|
|
|
ret, frame = camera.read() |
|
|
|
frame = draw_rectangles(frame) |
|
|
|
frame = analyze(frame) |
|
|
|
cv2.imshow('Input', frame) |
|
|
|
|
|
|
|
c = cv2.waitKey(1) |
|
|
|