@@ -7,7 +7,7 @@ setup = setup.py | |||||
default : $(target) test | default : $(target) test | ||||
# Compile | # Compile | ||||
$(target): $(srcdir)/permanent.c | |||||
$(target): $(srcdir)/* | |||||
python $(setup) build_ext --inplace | python $(setup) build_ext --inplace | ||||
test : | test : | ||||
@@ -4,6 +4,7 @@ import multiprocessing as mp | |||||
import numpy as np | import numpy as np | ||||
import lib | import lib | ||||
import time | import time | ||||
from matplotlib import pyplot as plt | |||||
def perm_ryser(a): | def perm_ryser(a): | ||||
''' the permanent calculated using the ryser formula. much faster than the naive approach ''' | ''' the permanent calculated using the ryser formula. much faster than the naive approach ''' | ||||
@@ -16,23 +17,30 @@ def perm_ryser(a): | |||||
terms=map(get_term, indeces) | terms=map(get_term, indeces) | ||||
return np.sum(terms)*((-1)**n) | return np.sum(terms)*((-1)**n) | ||||
dimension=9 | |||||
real=np.random.uniform(-1, 1, dimension*dimension).reshape((dimension, dimension)) | |||||
imag=np.random.uniform(-1, 1, dimension*dimension).reshape((dimension, dimension)) | |||||
submatrix=real+1j*imag | |||||
maxtime=1 | |||||
dimensions=range(1,11) | |||||
#print lib.permanent(submatrix), perm_ryser(submatrix) | |||||
for (function, label) in zip((lib.permanent, perm_ryser), ("C", "Python")): | |||||
counts=[] | |||||
for dimension in dimensions: | |||||
print dimension | |||||
real=np.random.uniform(-1, 1, dimension*dimension).reshape((dimension, dimension)) | |||||
imag=np.random.uniform(-1, 1, dimension*dimension).reshape((dimension, dimension)) | |||||
submatrix=real+1j*imag | |||||
#sys.exit(0) | |||||
#t=time.clock() | |||||
#for i in range(1000): | |||||
#perm_ryser(submatrix) | |||||
#t1=time.clock()-t | |||||
t=time.clock() | |||||
n=0 | |||||
while time.clock()-t < maxtime: | |||||
for i in range(5): | |||||
function(submatrix) | |||||
n+=5 | |||||
counts.append(n) | |||||
t=time.clock() | |||||
for i in range(1000): | |||||
lib.permanent(submatrix) | |||||
t2=time.clock()-t | |||||
print t2 | |||||
plt.plot(dimensions, counts, '.-', label=label) | |||||
#print t1/t2 | |||||
plt.ylabel('Number of permanents per second') | |||||
plt.xlabel('Dimension') | |||||
plt.xlim(min(dimensions), max(dimensions)) | |||||
plt.legend() | |||||
plt.semilogy() | |||||
plt.savefig('out.pdf') |
@@ -8,7 +8,7 @@ int countbits(unsigned int n) | |||||
q = (q & 0x0F0F0F0F0F0F0F0F) + ((q & 0xF0F0F0F0F0F0F0F0) >> 4); | q = (q & 0x0F0F0F0F0F0F0F0F) + ((q & 0xF0F0F0F0F0F0F0F0) >> 4); | ||||
q = (q & 0x00FF00FF00FF00FF) + ((q & 0xFF00FF00FF00FF00) >> 8); | q = (q & 0x00FF00FF00FF00FF) + ((q & 0xFF00FF00FF00FF00) >> 8); | ||||
q = (q & 0x0000FFFF0000FFFF) + ((q & 0xFFFF0000FFFF0000) >> 16); | q = (q & 0x0000FFFF0000FFFF) + ((q & 0xFFFF0000FFFF0000) >> 16); | ||||
q = (q & 0x00000000FFFFFFFF) + ((q & 0xFFFFFFFF00000000) >> 32); // This last & isq't strictly qecessary. | |||||
q = (q & 0x00000000FFFFFFFF) + ((q & 0xFFFFFFFF00000000) >> 32); // This last & isn't strictly qecessary. | |||||
return q; | return q; | ||||
} | } | ||||
@@ -40,8 +40,8 @@ void complex_inc(npy_complex128 *a, npy_complex128 b) { | |||||
// Multipy a number by another one | // Multipy a number by another one | ||||
void complex_multiply(npy_complex128 *a, npy_complex128 b) { | void complex_multiply(npy_complex128 *a, npy_complex128 b) { | ||||
npy_complex128 c = {.real=a->real, .imag=a->imag}; | |||||
a->real = c.real*b.real-c.imag*b.imag; | |||||
a->imag = c.real*b.imag+c.imag*b.real; | |||||
double c = a->real; | |||||
a->real = a->real*b.real-a->imag*b.imag; | |||||
a->imag = c*b.imag+a->imag*b.real; | |||||
} | } | ||||
@@ -4,7 +4,7 @@ | |||||
#include <numpy/arrayobject.h> | #include <numpy/arrayobject.h> | ||||
#include "npy_util.h" | #include "npy_util.h" | ||||
#include "bithacks.h" | #include "bithacks.h" | ||||
#include "permanents.h" | |||||
#include "ryser.h" | |||||
// Forward function declaration | // Forward function declaration | ||||
static PyObject *permanent(PyObject *self, PyObject *args); | static PyObject *permanent(PyObject *self, PyObject *args); | ||||
@@ -28,6 +28,6 @@ static PyObject *permanent(PyObject *self, PyObject *args) { | |||||
if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &submatrix)) {return NULL;} | if (!PyArg_ParseTuple(args, "O!", &PyArray_Type, &submatrix)) {return NULL;} | ||||
// Compute the permanent | // Compute the permanent | ||||
npy_complex128 p = perm_ryser(submatrix); | |||||
npy_complex128 p = ryser(submatrix); | |||||
return PyComplex_FromDoubles(p.real, p.imag); | return PyComplex_FromDoubles(p.real, p.imag); | ||||
} | } |
@@ -1,22 +0,0 @@ | |||||
// Ryser's algorithm | |||||
static npy_complex128 perm_ryser(PyArrayObject *submatrix) { | |||||
int n = (int) PyArray_DIM(submatrix, 0); | |||||
npy_complex128 rowsum, rowsumprod; | |||||
npy_complex128 perm = complex_zero; | |||||
int exp = 1 << n; | |||||
int i, y, z; | |||||
for (i=0; i<exp; ++i) { | |||||
rowsumprod = complex_one; | |||||
for (y=0; y<n; ++y) { | |||||
rowsum = complex_zero; | |||||
for (z=0; z<n; ++z) { | |||||
if ((i & (1 << z)) != 0) { complex_inc(&rowsum, SM(z, y)); } | |||||
} | |||||
complex_multiply(&rowsumprod, rowsum); | |||||
} | |||||
complex_inc(&perm, complex_float_prod(rowsumprod, bitparity(i))); | |||||
} | |||||
if (n%2 == 1) {perm=complex_float_prod(perm, -1);} | |||||
return perm; | |||||
} | |||||