Python C extension to compute the permanent.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

run-tests.py 1.3KB

10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
10 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546
  1. import os, sys
  2. import time
  3. import multiprocessing as mp
  4. import numpy as np
  5. import time
  6. from matplotlib import pyplot as plt
  7. from permanent import permanent
  8. def perm_ryser(a):
  9. ''' the permanent calculated using the ryser formula. much faster than the naive approach '''
  10. n,n2=a.shape
  11. z=np.arange(n)
  12. irange=xrange(2**n)
  13. get_index=lambda i: (i & (1 << z)) != 0
  14. get_term=lambda index: ((-1)**np.sum(index))*np.prod(np.sum(a[index,:], 0))
  15. indeces=map(get_index, irange)
  16. terms=map(get_term, indeces)
  17. return np.sum(terms)*((-1)**n)
  18. maxtime=1
  19. dimensions=range(1,11)
  20. for (function, label) in zip((permanent, perm_ryser), ("C", "Python")):
  21. counts=[]
  22. for dimension in dimensions:
  23. print dimension
  24. real=np.random.uniform(-1, 1, dimension*dimension).reshape((dimension, dimension))
  25. imag=np.random.uniform(-1, 1, dimension*dimension).reshape((dimension, dimension))
  26. submatrix=real+1j*imag
  27. t=time.clock()
  28. n=0
  29. while time.clock()-t < maxtime:
  30. for i in range(5):
  31. function(submatrix)
  32. n+=5
  33. counts.append(n)
  34. plt.plot(dimensions, counts, '.-', label=label)
  35. plt.ylabel('Number of permanents per second')
  36. plt.xlabel('Dimension')
  37. plt.xlim(min(dimensions), max(dimensions))
  38. plt.legend()
  39. plt.semilogy()
  40. plt.savefig('out.pdf')