|
- # Redis configuration file example
-
- # Note on units: when memory size is needed, it is possible to specify
- # it in the usual form of 1k 5GB 4M and so forth:
- #
- # 1k => 1000 bytes
- # 1kb => 1024 bytes
- # 1m => 1000000 bytes
- # 1mb => 1024*1024 bytes
- # 1g => 1000000000 bytes
- # 1gb => 1024*1024*1024 bytes
- #
- # units are case insensitive so 1GB 1Gb 1gB are all the same.
-
- # By default Redis does not run as a daemon. Use 'yes' if you need it.
- # Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
- daemonize no
-
- # When running daemonized, Redis writes a pid file in /var/run/redis.pid by
- # default. You can specify a custom pid file location here.
- pidfile /var/run/redis.pid
-
- # Accept connections on the specified port, default is 6379.
- # If port 0 is specified Redis will not listen on a TCP socket.
- port 6379
-
- # If you want you can bind a single interface, if the bind option is not
- # specified all the interfaces will listen for incoming connections.
- #
- # bind 127.0.0.1
-
- # Specify the path for the unix socket that will be used to listen for
- # incoming connections. There is no default, so Redis will not listen
- # on a unix socket when not specified.
- #
- # unixsocket /tmp/redis.sock
- # unixsocketperm 755
-
- # Close the connection after a client is idle for N seconds (0 to disable)
- timeout 0
-
- # Set server verbosity to 'debug'
- # it can be one of:
- # debug (a lot of information, useful for development/testing)
- # verbose (many rarely useful info, but not a mess like the debug level)
- # notice (moderately verbose, what you want in production probably)
- # warning (only very important / critical messages are logged)
- loglevel notice
-
- # Specify the log file name. Also 'stdout' can be used to force
- # Redis to log on the standard output. Note that if you use standard
- # output for logging but daemonize, logs will be sent to /dev/null
- logfile stdout
-
- # To enable logging to the system logger, just set 'syslog-enabled' to yes,
- # and optionally update the other syslog parameters to suit your needs.
- # syslog-enabled no
-
- # Specify the syslog identity.
- # syslog-ident redis
-
- # Specify the syslog facility. Must be USER or between LOCAL0-LOCAL7.
- # syslog-facility local0
-
- # Set the number of databases. The default database is DB 0, you can select
- # a different one on a per-connection basis using SELECT <dbid> where
- # dbid is a number between 0 and 'databases'-1
- databases 32
-
- ################################ SNAPSHOTTING #################################
- #
- # Save the DB on disk:
- #
- # save <seconds> <changes>
- #
- # Will save the DB if both the given number of seconds and the given
- # number of write operations against the DB occurred.
- #
- # In the example below the behaviour will be to save:
- # after 900 sec (15 min) if at least 1 key changed
- # after 300 sec (5 min) if at least 10 keys changed
- # after 60 sec if at least 10000 keys changed
- #
- # Note: you can disable saving at all commenting all the "save" lines.
- #
- # It is also possible to remove all the previously configured save
- # points by adding a save directive with a single empty string argument
- # like in the following example:
- #
- # save ""
-
- save 900 1
- save 300 10
- save 60 10000
-
- # By default Redis will stop accepting writes if RDB snapshots are enabled
- # (at least one save point) and the latest background save failed.
- # This will make the user aware (in an hard way) that data is not persisting
- # on disk properly, otherwise chances are that no one will notice and some
- # distater will happen.
- #
- # If the background saving process will start working again Redis will
- # automatically allow writes again.
- #
- # However if you have setup your proper monitoring of the Redis server
- # and persistence, you may want to disable this feature so that Redis will
- # continue to work as usually even if there are problems with disk,
- # permissions, and so forth.
- stop-writes-on-bgsave-error yes
-
- # Compress string objects using LZF when dump .rdb databases?
- # For default that's set to 'yes' as it's almost always a win.
- # If you want to save some CPU in the saving child set it to 'no' but
- # the dataset will likely be bigger if you have compressible values or keys.
- rdbcompression yes
-
- # Since verison 5 of RDB a CRC64 checksum is placed at the end of the file.
- # This makes the format more resistant to corruption but there is a performance
- # hit to pay (around 10%) when saving and loading RDB files, so you can disable it
- # for maximum performances.
- #
- # RDB files created with checksum disabled have a checksum of zero that will
- # tell the loading code to skip the check.
- rdbchecksum yes
-
- # The filename where to dump the DB
- dbfilename dump.rdb
-
- # The working directory.
- #
- # The DB will be written inside this directory, with the filename specified
- # above using the 'dbfilename' configuration directive.
- #
- # Also the Append Only File will be created inside this directory.
- #
- # Note that you must specify a directory here, not a file name.
- dir /var/redis
-
- ################################# REPLICATION #################################
-
- # Master-Slave replication. Use slaveof to make a Redis instance a copy of
- # another Redis server. Note that the configuration is local to the slave
- # so for example it is possible to configure the slave to save the DB with a
- # different interval, or to listen to another port, and so on.
- #
- # slaveof <masterip> <masterport>
-
- # If the master is password protected (using the "requirepass" configuration
- # directive below) it is possible to tell the slave to authenticate before
- # starting the replication synchronization process, otherwise the master will
- # refuse the slave request.
- #
- # masterauth <master-password>
-
- # When a slave lost the connection with the master, or when the replication
- # is still in progress, the slave can act in two different ways:
- #
- # 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
- # still reply to client requests, possibly with out of date data, or the
- # data set may just be empty if this is the first synchronization.
- #
- # 2) if slave-serve-stale data is set to 'no' the slave will reply with
- # an error "SYNC with master in progress" to all the kind of commands
- # but to INFO and SLAVEOF.
- #
- slave-serve-stale-data yes
-
- # You can configure a slave instance to accept writes or not. Writing against
- # a slave instance may be useful to store some ephemeral data (because data
- # written on a slave will be easily deleted after resync with the master) but
- # may also cause problems if clients are writing to it because of a
- # misconfiguration.
- #
- # Since Redis 2.6 by default slaves are read-only.
- #
- # Note: read only slaves are not designed to be exposed to untrusted clients
- # on the internet. It's just a protection layer against misuse of the instance.
- # Still a read only slave exports by default all the administrative commands
- # such as CONFIG, DEBUG, and so forth. To a limited extend you can improve
- # security of read only slaves using 'rename-command' to shadow all the
- # administrative / dangerous commands.
- slave-read-only yes
-
- # Slaves send PINGs to server in a predefined interval. It's possible to change
- # this interval with the repl_ping_slave_period option. The default value is 10
- # seconds.
- #
- # repl-ping-slave-period 10
-
- # The following option sets a timeout for both Bulk transfer I/O timeout and
- # master data or ping response timeout. The default value is 60 seconds.
- #
- # It is important to make sure that this value is greater than the value
- # specified for repl-ping-slave-period otherwise a timeout will be detected
- # every time there is low traffic between the master and the slave.
- #
- # repl-timeout 60
-
- # The slave priority is an integer number published by Redis in the INFO output.
- # It is used by Redis Sentinel in order to select a slave to promote into a
- # master if the master is no longer working correctly.
- #
- # A slave with a low priority number is considered better for promotion, so
- # for instance if there are three slaves with priority 10, 100, 25 Sentinel will
- # pick the one wtih priority 10, that is the lowest.
- #
- # However a special priority of 0 marks the slave as not able to perform the
- # role of master, so a slave with priority of 0 will never be selected by
- # Redis Sentinel for promotion.
- #
- # By default the priority is 100.
- slave-priority 100
-
- ################################## SECURITY ###################################
-
- # Require clients to issue AUTH <PASSWORD> before processing any other
- # commands. This might be useful in environments in which you do not trust
- # others with access to the host running redis-server.
- #
- # This should stay commented out for backward compatibility and because most
- # people do not need auth (e.g. they run their own servers).
- #
- # Warning: since Redis is pretty fast an outside user can try up to
- # 150k passwords per second against a good box. This means that you should
- # use a very strong password otherwise it will be very easy to break.
- #
- # requirepass <null>
-
- # Command renaming.
- #
- # It is possible to change the name of dangerous commands in a shared
- # environment. For instance the CONFIG command may be renamed into something
- # of hard to guess so that it will be still available for internal-use
- # tools but not available for general clients.
- #
- # Example:
- #
- # rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
- #
- # It is also possible to completely kill a command renaming it into
- # an empty string:
- #
- # rename-command CONFIG ""
-
- ################################### LIMITS ####################################
-
- # Set the max number of connected clients at the same time. By default
- # this limit is set to 10000 clients, however if the Redis server is not
- # able ot configure the process file limit to allow for the specified limit
- # the max number of allowed clients is set to the current file limit
- # minus 32 (as Redis reserves a few file descriptors for internal uses).
- #
- # Once the limit is reached Redis will close all the new connections sending
- # an error 'max number of clients reached'.
- #
- # maxclients 10000
-
- # Don't use more memory than the specified amount of bytes.
- # When the memory limit is reached Redis will try to remove keys
- # accordingly to the eviction policy selected (see maxmemmory-policy).
- #
- # If Redis can't remove keys according to the policy, or if the policy is
- # set to 'noeviction', Redis will start to reply with errors to commands
- # that would use more memory, like SET, LPUSH, and so on, and will continue
- # to reply to read-only commands like GET.
- #
- # This option is usually useful when using Redis as an LRU cache, or to set
- # an hard memory limit for an instance (using the 'noeviction' policy).
- #
- # WARNING: If you have slaves attached to an instance with maxmemory on,
- # the size of the output buffers needed to feed the slaves are subtracted
- # from the used memory count, so that network problems / resyncs will
- # not trigger a loop where keys are evicted, and in turn the output
- # buffer of slaves is full with DELs of keys evicted triggering the deletion
- # of more keys, and so forth until the database is completely emptied.
- #
- # In short... if you have slaves attached it is suggested that you set a lower
- # limit for maxmemory so that there is some free RAM on the system for slave
- # output buffers (but this is not needed if the policy is 'noeviction').
- #
- # maxmemory <bytes>
-
- # MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
- # is reached? You can select among five behavior:
- #
- # volatile-lru -> remove the key with an expire set using an LRU algorithm
- # allkeys-lru -> remove any key accordingly to the LRU algorithm
- # volatile-random -> remove a random key with an expire set
- # allkeys-random -> remove a random key, any key
- # volatile-ttl -> remove the key with the nearest expire time (minor TTL)
- # noeviction -> don't expire at all, just return an error on write operations
- #
- # Note: with all the kind of policies, Redis will return an error on write
- # operations, when there are not suitable keys for eviction.
- #
- # At the date of writing this commands are: set setnx setex append
- # incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
- # sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
- # zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
- # getset mset msetnx exec sort
- #
- # The default is:
- #
- # maxmemory-policy volatile-lru
-
- # LRU and minimal TTL algorithms are not precise algorithms but approximated
- # algorithms (in order to save memory), so you can select as well the sample
- # size to check. For instance for default Redis will check three keys and
- # pick the one that was used less recently, you can change the sample size
- # using the following configuration directive.
- #
- # maxmemory-samples 3
-
- ############################## APPEND ONLY MODE ###############################
-
- # By default Redis asynchronously dumps the dataset on disk. This mode is
- # good enough in many applications, but an issue with the Redis process or
- # a power outage may result into a few minutes of writes lost (depending on
- # the configured save points).
- #
- # The Append Only File is an alternative persistence mode that provides
- # much better durability. For instance using the default data fsync policy
- # (see later in the config file) Redis can lose just one second of writes in a
- # dramatic event like a server power outage, or a single write if something
- # wrong with the Redis process itself happens, but the operating system is
- # still running correctly.
- #
- # AOF and RDB persistence can be enabled at the same time without problems.
- # If the AOF is enabled on startup Redis will load the AOF, that is the file
- # with the better durability guarantees.
- #
- # Please check http://redis.io/topics/persistence for more information.
-
- appendonly yes
-
- # The name of the append only file (default: "appendonly.aof")
- # appendfilename appendonly.aof
-
- # The fsync() call tells the Operating System to actually write data on disk
- # instead to wait for more data in the output buffer. Some OS will really flush
- # data on disk, some other OS will just try to do it ASAP.
- #
- # Redis supports three different modes:
- #
- # no: don't fsync, just let the OS flush the data when it wants. Faster.
- # always: fsync after every write to the append only log . Slow, Safest.
- # everysec: fsync only one time every second. Compromise.
- #
- # The default is "everysec" that's usually the right compromise between
- # speed and data safety. It's up to you to understand if you can relax this to
- # "no" that will let the operating system flush the output buffer when
- # it wants, for better performances (but if you can live with the idea of
- # some data loss consider the default persistence mode that's snapshotting),
- # or on the contrary, use "always" that's very slow but a bit safer than
- # everysec.
- #
- # More details please check the following article:
- # http://antirez.com/post/redis-persistence-demystified.html
- #
- # If unsure, use "everysec".
-
- # appendfsync always
- appendfsync everysec
- # appendfsync no
-
- # When the AOF fsync policy is set to always or everysec, and a background
- # saving process (a background save or AOF log background rewriting) is
- # performing a lot of I/O against the disk, in some Linux configurations
- # Redis may block too long on the fsync() call. Note that there is no fix for
- # this currently, as even performing fsync in a different thread will block
- # our synchronous write(2) call.
- #
- # In order to mitigate this problem it's possible to use the following option
- # that will prevent fsync() from being called in the main process while a
- # BGSAVE or BGREWRITEAOF is in progress.
- #
- # This means that while another child is saving the durability of Redis is
- # the same as "appendfsync none", that in practical terms means that it is
- # possible to lost up to 30 seconds of log in the worst scenario (with the
- # default Linux settings).
- #
- # If you have latency problems turn this to "yes". Otherwise leave it as
- # "no" that is the safest pick from the point of view of durability.
- no-appendfsync-on-rewrite no
-
- # Automatic rewrite of the append only file.
- # Redis is able to automatically rewrite the log file implicitly calling
- # BGREWRITEAOF when the AOF log size will growth by the specified percentage.
- #
- # This is how it works: Redis remembers the size of the AOF file after the
- # latest rewrite (or if no rewrite happened since the restart, the size of
- # the AOF at startup is used).
- #
- # This base size is compared to the current size. If the current size is
- # bigger than the specified percentage, the rewrite is triggered. Also
- # you need to specify a minimal size for the AOF file to be rewritten, this
- # is useful to avoid rewriting the AOF file even if the percentage increase
- # is reached but it is still pretty small.
- #
- # Specify a percentage of zero in order to disable the automatic AOF
- # rewrite feature.
-
- auto-aof-rewrite-percentage 100
- auto-aof-rewrite-min-size 64mb
-
- ################################ LUA SCRIPTING ###############################
-
- # Max execution time of a Lua script in milliseconds.
- #
- # If the maximum execution time is reached Redis will log that a script is
- # still in execution after the maximum allowed time and will start to
- # reply to queries with an error.
- #
- # When a long running script exceed the maximum execution time only the
- # SCRIPT KILL and SHUTDOWN NOSAVE commands are available. The first can be
- # used to stop a script that did not yet called write commands. The second
- # is the only way to shut down the server in the case a write commands was
- # already issue by the script but the user don't want to wait for the natural
- # termination of the script.
- #
- # Set it to 0 or a negative value for unlimited execution without warnings.
- lua-time-limit 5000
-
- ################################## SLOW LOG ###################################
-
- # The Redis Slow Log is a system to log queries that exceeded a specified
- # execution time. The execution time does not include the I/O operations
- # like talking with the client, sending the reply and so forth,
- # but just the time needed to actually execute the command (this is the only
- # stage of command execution where the thread is blocked and can not serve
- # other requests in the meantime).
- #
- # You can configure the slow log with two parameters: one tells Redis
- # what is the execution time, in microseconds, to exceed in order for the
- # command to get logged, and the other parameter is the length of the
- # slow log. When a new command is logged the oldest one is removed from the
- # queue of logged commands.
-
- # The following time is expressed in microseconds, so 1000000 is equivalent
- # to one second. Note that a negative number disables the slow log, while
- # a value of zero forces the logging of every command.
- slowlog-log-slower-than 10000
-
- # There is no limit to this length. Just be aware that it will consume memory.
- # You can reclaim memory used by the slow log with SLOWLOG RESET.
- slowlog-max-len 128
-
- ############################### ADVANCED CONFIG ###############################
-
- # Hashes are encoded using a memory efficient data structure when they have a
- # small number of entries, and the biggest entry does not exceed a given
- # threshold. These thresholds can be configured using the following directives.
- hash-max-ziplist-entries 512
- hash-max-ziplist-value 64
-
- # Similarly to hashes, small lists are also encoded in a special way in order
- # to save a lot of space. The special representation is only used when
- # you are under the following limits:
- list-max-ziplist-entries 512
- list-max-ziplist-value 64
-
- # Sets have a special encoding in just one case: when a set is composed
- # of just strings that happens to be integers in radix 10 in the range
- # of 64 bit signed integers.
- # The following configuration setting sets the limit in the size of the
- # set in order to use this special memory saving encoding.
- set-max-intset-entries 512
-
- # Similarly to hashes and lists, sorted sets are also specially encoded in
- # order to save a lot of space. This encoding is only used when the length and
- # elements of a sorted set are below the following limits:
- zset-max-ziplist-entries 128
- zset-max-ziplist-value 64
-
- # Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
- # order to help rehashing the main Redis hash table (the one mapping top-level
- # keys to values). The hash table implementation Redis uses (see dict.c)
- # performs a lazy rehashing: the more operation you run into an hash table
- # that is rehashing, the more rehashing "steps" are performed, so if the
- # server is idle the rehashing is never complete and some more memory is used
- # by the hash table.
- #
- # The default is to use this millisecond 10 times every second in order to
- # active rehashing the main dictionaries, freeing memory when possible.
- #
- # If unsure:
- # use "activerehashing no" if you have hard latency requirements and it is
- # not a good thing in your environment that Redis can reply form time to time
- # to queries with 2 milliseconds delay.
- #
- # use "activerehashing yes" if you don't have such hard requirements but
- # want to free memory asap when possible.
- activerehashing yes
-
- # The client output buffer limits can be used to force disconnection of clients
- # that are not reading data from the server fast enough for some reason (a
- # common reason is that a Pub/Sub client can't consume messages as fast as the
- # publisher can produce them).
- #
- # The limit can be set differently for the three different classes of clients:
- #
- # normal -> normal clients
- # slave -> slave clients and MONITOR clients
- # pubsub -> clients subcribed to at least one pubsub channel or pattern
- #
- # The syntax of every client-output-buffer-limit directive is the following:
- #
- # client-output-buffer-limit <class> <hard limit> <soft limit> <soft seconds>
- #
- # A client is immediately disconnected once the hard limit is reached, or if
- # the soft limit is reached and remains reached for the specified number of
- # seconds (continuously).
- # So for instance if the hard limit is 32 megabytes and the soft limit is
- # 16 megabytes / 10 seconds, the client will get disconnected immediately
- # if the size of the output buffers reach 32 megabytes, but will also get
- # disconnected if the client reaches 16 megabytes and continuously overcomes
- # the limit for 10 seconds.
- #
- # By default normal clients are not limited because they don't receive data
- # without asking (in a push way), but just after a request, so only
- # asynchronous clients may create a scenario where data is requested faster
- # than it can read.
- #
- # Instead there is a default limit for pubsub and slave clients, since
- # subscribers and slaves receive data in a push fashion.
- #
- # Both the hard or the soft limit can be disabled just setting it to zero.
- client-output-buffer-limit normal 0 0 0
- client-output-buffer-limit slave 256mb 64mb 60
- client-output-buffer-limit pubsub 32mb 8mb 60
-
- ################################## INCLUDES ###################################
-
- # Include one or more other config files here. This is useful if you
- # have a standard template that goes to all Redis server but also need
- # to customize a few per-server settings. Include files can include
- # other files, so use this wisely.
- #
- # include /path/to/local.conf
- # include /path/to/other.conf
|