Anders and Briegel in Python
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

129 lignes
3.1KB

  1. .. abp documentation master file, created by
  2. sphinx-quickstart on Sun Jul 24 18:12:02 2016.
  3. You can adapt this file completely to your liking, but it should at least
  4. contain the root `toctree` directive.
  5. ``abp``
  6. ===============================
  7. This is the documentation for ``abp``. It's a work in progress.
  8. .. toctree::
  9. :hidden:
  10. :maxdepth: 2
  11. modules
  12. ``abp`` is a Python port of Anders and Briegel' s `method <https://arxiv.org/abs/quant-ph/0504117>`_ for fast simulation of Clifford circuits.
  13. That means that you can make quantum states of thousands of qubits, perform any sequence of Clifford operations, and measure in any of :math:`\{\sigma_x, \sigma_y, \sigma_z\}`.
  14. Installing
  15. ----------------------------
  16. You can install from ``pip``:
  17. .. code-block:: bash
  18. $ pip install --user abp
  19. Alternatively, clone from the `github repo <https://github.com/peteshadbolt/abp>`_ and run ``setup.py``:
  20. .. code-block:: bash
  21. $ git clone https://github.com/peteshadbolt/abp
  22. $ cd abp
  23. $ python setup.py install --user
  24. If you want to modify and test ``abp`` without having to re-install, switch into ``develop`` mode:
  25. .. code-block:: bash
  26. $ python setup.py develop --user
  27. Quickstart
  28. ----------------------------
  29. It's pretty easy to build a graph state, act some gates, and do measurements::
  30. >>> from abp import GraphState
  31. >>> g = GraphState(range(5))
  32. >>> for i in range(5):
  33. ... g.act_hadamard(i)
  34. ...
  35. >>> for i in range(4):
  36. ... g.act_cz(i, i+1)
  37. ...
  38. >>> print g
  39. 0: IA (1,)
  40. 1: IA (0,2)
  41. 2: IA (1,3)
  42. 3: IA (2,4)
  43. 4: IA (3,)
  44. >>> g.measure(2, "px")
  45. 0
  46. >>> print g
  47. 0: IA (3,)
  48. 1: ZC (3,)
  49. 2: IA -
  50. 3: ZA (0,1,4)
  51. 4: IA (3,)
  52. Working with GraphStates
  53. -------------------------
  54. The ``abp.GraphState`` class is the main interface to ``abp``.
  55. .. autoclass:: abp.GraphState
  56. :special-members: __init__
  57. :members:
  58. .. _clifford:
  59. The Clifford group
  60. ----------------------
  61. .. automodule:: abp.clifford
  62. |
  63. The ``clifford`` module provides a few useful functions:
  64. .. autofunction:: abp.clifford.use_old_cz
  65. :noindex:
  66. Visualization
  67. ----------------------
  68. ``abp`` comes with a tool to visualize graph states in a WebGL compatible web browser (Chrome, Firefox, Safari etc). It uses a client-server architecture.
  69. First, run ``abpserver`` in a terminal:
  70. .. code-block:: bash
  71. $ abpserver
  72. Listening on port 5000 for clients..
  73. Then browse to ``http://localhost:5001/`` (in some circumstances ``abp`` will automatically pop a browser window).
  74. Now, in another terminal, use ``abp.fancy.GraphState`` to run a Clifford circuit::
  75. >>> from abp.fancy import GraphState
  76. >>> g = GraphState(range(10))
  77. >>> g.act_circuit([(i, "hadamard") for i in range(10)])
  78. >>> g.act_circuit([((i, i+1), "cz") for i in range(9)])
  79. >>> g.update()
  80. And you should see a 3D visualization of the state. You can call ``update()`` in a loop to see an animation.
  81. Reference
  82. ----------------------------
  83. More detailed docs are available here:
  84. * :ref:`genindex`
  85. * :ref:`modindex`
  86. * :ref:`search`