Anders and Briegel in Python
25개 이상의 토픽을 선택하실 수 없습니다. Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

129 lines
3.1KB

  1. .. abp documentation master file, created by
  2. sphinx-quickstart on Sun Jul 24 18:12:02 2016.
  3. You can adapt this file completely to your liking, but it should at least
  4. contain the root `toctree` directive.
  5. ``abp``
  6. ===============================
  7. This is the documentation for ``abp``. It's a work in progress.
  8. .. toctree::
  9. :hidden:
  10. :maxdepth: 2
  11. modules
  12. ``abp`` is a Python port of Anders and Briegel' s `method <https://arxiv.org/abs/quant-ph/0504117>`_ for fast simulation of Clifford circuits.
  13. That means that you can make quantum states of thousands of qubits, perform any sequence of Clifford operations, and measure in any of :math:`\{\sigma_x, \sigma_y, \sigma_z\}`.
  14. Installing
  15. ----------------------------
  16. You can install from ``pip``:
  17. .. code-block:: bash
  18. $ pip install --user abp==0.4.19
  19. Alternatively, clone from the `github repo <https://github.com/peteshadbolt/abp>`_ and run ``setup.py``:
  20. .. code-block:: bash
  21. $ git clone https://github.com/peteshadbolt/abp
  22. $ cd abp
  23. $ python setup.py install --user
  24. If you want to modify and test ``abp`` without having to re-install, switch into ``develop`` mode:
  25. .. code-block:: bash
  26. $ python setup.py develop --user
  27. Quickstart
  28. ----------------------------
  29. It's pretty easy to build a graph state, act some gates, and do measurements::
  30. >>> from abp import GraphState
  31. >>> g = GraphState(range(5))
  32. >>> for i in range(5):
  33. ... g.act_hadamard(i)
  34. ...
  35. >>> for i in range(4):
  36. ... g.act_cz(i, i+1)
  37. ...
  38. >>> print g
  39. 0: IA (1,)
  40. 1: IA (0,2)
  41. 2: IA (1,3)
  42. 3: IA (2,4)
  43. 4: IA (3,)
  44. >>> g.measure(2, "px")
  45. 0
  46. >>> print g
  47. 0: IA (3,)
  48. 1: ZC (3,)
  49. 2: IA -
  50. 3: ZA (0,1,4)
  51. 4: IA (3,)
  52. Working with GraphStates
  53. -------------------------
  54. The ``abp.GraphState`` class is the main interface to ``abp``.
  55. .. autoclass:: abp.GraphState
  56. :special-members: __init__
  57. :members:
  58. .. _clifford:
  59. The Clifford group
  60. ----------------------
  61. .. automodule:: abp.clifford
  62. |
  63. The ``clifford`` module provides a few useful functions:
  64. .. autofunction:: abp.clifford.use_old_cz
  65. :noindex:
  66. Visualization
  67. ----------------------
  68. ``abp`` comes with a tool to visualize graph states in a WebGL compatible web browser (Chrome, Firefox, Safari etc). It uses a client-server architecture.
  69. First, run ``abpserver`` in a terminal:
  70. .. code-block:: bash
  71. $ abpserver
  72. Listening on port 5000 for clients..
  73. Then browse to ``http://localhost:5001/`` (in some circumstances ``abp`` will automatically pop a browser window).
  74. Now, in another terminal, use ``abp.fancy.GraphState`` to run a Clifford circuit::
  75. >>> from abp.fancy import GraphState
  76. >>> g = GraphState(range(10))
  77. >>> g.act_circuit([(i, "hadamard") for i in range(10)])
  78. >>> g.act_circuit([((i, i+1), "cz") for i in range(9)])
  79. >>> g.update()
  80. And you should see a 3D visualization of the state. You can call ``update()`` in a loop to see an animation.
  81. Reference
  82. ----------------------------
  83. More detailed docs are available here:
  84. * :ref:`genindex`
  85. * :ref:`modindex`
  86. * :ref:`search`