|
- from numpy import *
- from tqdm import tqdm
- import itertools as it
- from abp import clifford
- from abp import build_tables
- from abp import qi
- from nose.tools import raises
-
-
- def identify_pauli(m):
- """ Given a signed Pauli matrix, name it. """
- for sign in (+1, -1):
- for pauli_label, pauli in zip("xyz", qi.paulis):
- if allclose(sign * pauli, m):
- return sign, pauli_label
-
-
- def test_find_clifford():
- """ Test that slightly suspicious function """
- assert build_tables.find_clifford(qi.id, clifford.unitaries) == 0
- assert build_tables.find_clifford(qi.px, clifford.unitaries) == 1
-
-
- @raises(IndexError)
- def test_find_non_clifford():
- """ Test that looking for a non-Clifford gate fails """
- build_tables.find_clifford(qi.t, clifford.unitaries)
-
-
- def get_action(u):
- """ What does this unitary operator do to the Paulis? """
- return [identify_pauli(u.dot(p.dot(qi.hermitian_conjugate(u)))) for p in qi.paulis]
-
-
- def format_action(action):
- return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)
-
-
- def test_we_have_24_matrices():
- """ Check that we have 24 unique actions on the Bloch sphere """
- actions = set(tuple(get_action(u)) for u in clifford.unitaries)
- assert len(set(actions)) == 24
-
-
- def test_we_have_all_useful_gates():
- """ Check that all the interesting gates are included up to a global phase """
- for name, u in qi.by_name.items():
- build_tables.find_clifford(u, clifford.unitaries)
-
-
- def test_group():
- """ Test we are really in a group """
- matches = set()
- for a, b in tqdm(it.combinations(clifford.unitaries, 2), "Testing this is a group"):
- i = build_tables.find_clifford(a.dot(b), clifford.unitaries)
- matches.add(i)
- assert len(matches) == 24
-
-
- def test_conjugation_table():
- """ Check that the table of Hermitian conjugates is okay """
- assert len(set(clifford.conjugation_table)) == 24
-
-
- def test_cz_table_makes_sense():
- """ Test the CZ table is symmetric """
- hadamard = clifford.by_name["hadamard"]
- assert all(clifford.cz_table[0, 0, 0] == [1, 0, 0])
- assert all(clifford.cz_table[1, 0, 0] == [0, 0, 0])
- assert all(
- clifford.cz_table[0, hadamard, hadamard] == [0, hadamard, hadamard])
-
- def test_commuters():
- """ Test that commutation is good """
- assert len(build_tables.get_commuters(clifford.unitaries)) == 4
|