Anders and Briegel in Python
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

308 lines
10.0KB

  1. """
  2. Provides an extremely basic graph structure, based on key/value pairs
  3. """
  4. import itertools as it
  5. import json
  6. import qi, clifford, util
  7. import random
  8. class GraphState(object):
  9. def __init__(self, nodes=[]):
  10. self.adj, self.node = {}, {}
  11. self.add_nodes(nodes)
  12. def add_node(self, v, **kwargs):
  13. """ Add a node """
  14. assert not v in self.node
  15. self.adj[v] = {}
  16. self.node[v] = {"vop": clifford.by_name["hadamard"]}
  17. self.node[v].update(kwargs)
  18. def add_nodes(self, nodes):
  19. """ Add a buncha nodes """
  20. for n in nodes:
  21. self.add_node(n)
  22. def add_edge(self, v1, v2, data={}):
  23. """ Add an edge between two vertices in the self """
  24. assert v1 != v2
  25. self.adj[v1][v2] = data
  26. self.adj[v2][v1] = data
  27. def add_edges(self, edges):
  28. """ Add a buncha edges """
  29. for (v1, v2) in edges:
  30. self.add_edge(v1, v2)
  31. def del_edge(self, v1, v2):
  32. """ Delete an edge between two vertices in the self """
  33. del self.adj[v1][v2]
  34. del self.adj[v2][v1]
  35. def has_edge(self, v1, v2):
  36. """ Test existence of an edge between two vertices in the self """
  37. return v2 in self.adj[v1]
  38. def toggle_edge(self, v1, v2):
  39. """ Toggle an edge between two vertices in the self """
  40. if self.has_edge(v1, v2):
  41. self.del_edge(v1, v2)
  42. else:
  43. self.add_edge(v1, v2)
  44. def edgelist(self):
  45. """ Describe a graph as an edgelist """
  46. # TODO: inefficient
  47. edges = set(tuple(sorted((i, n)))
  48. for i, v in self.adj.items()
  49. for n in v)
  50. return tuple(edges)
  51. def remove_vop(self, a, avoid):
  52. """ Reduces VOP[a] to the identity """
  53. others = set(self.adj[a]) - {avoid}
  54. #TODO: this is a hack for determinsim. remove
  55. swap_qubit = min(others) if others else avoid
  56. #swap_qubit = others.pop() if others else avoid
  57. for v in reversed(clifford.decompositions[self.node[a]["vop"]]):
  58. if v == "x":
  59. self.local_complementation(a, "U ->")
  60. else:
  61. self.local_complementation(swap_qubit, "V ->")
  62. def local_complementation(self, v, prefix=""):
  63. """ As defined in LISTING 1 of Anders & Briegel """
  64. for i, j in it.combinations(self.adj[v], 2):
  65. self.toggle_edge(i, j)
  66. self.node[v]["vop"] = clifford.times_table[
  67. self.node[v]["vop"], clifford.by_name["msqx_h"]]
  68. for i in self.adj[v]:
  69. self.node[i]["vop"] = clifford.times_table[
  70. self.node[i]["vop"], clifford.by_name["sqz_h"]]
  71. def act_local_rotation(self, v, op):
  72. """ Act a local rotation """
  73. rotation = clifford.by_name[str(op)]
  74. self.node[v]["vop"] = clifford.times_table[
  75. rotation, self.node[v]["vop"]]
  76. def _update_vop(self, v, op):
  77. """ Update a VOP - only used internally"""
  78. rotation = clifford.by_name[str(op)]
  79. self.node[v]["vop"] = clifford.times_table[
  80. self.node[v]["vop"], rotation]
  81. def act_hadamard(self, qubit):
  82. """ Shorthand """
  83. self.act_local_rotation(qubit, 10)
  84. def _lonely(self, a, b):
  85. """ Is this qubit _lonely ? """
  86. return len(self.adj[a]) > (b in self.adj[a])
  87. def act_cz(self, a, b):
  88. """ Act a controlled-phase gate on two qubits """
  89. if self._lonely(a, b):
  90. self.remove_vop(a, b)
  91. if self._lonely(b, a):
  92. self.remove_vop(b, a)
  93. if self._lonely(a, b) and not clifford.is_diagonal(self.node[a]["vop"]):
  94. self.remove_vop(a, b)
  95. edge = self.has_edge(a, b)
  96. va = self.node[a]["vop"]
  97. vb = self.node[b]["vop"]
  98. new_edge, self.node[a]["vop"], self.node[b]["vop"] = \
  99. clifford.cz_table[int(edge), va, vb]
  100. if new_edge != edge:
  101. self.toggle_edge(a, b)
  102. def measure(self, node, basis, force=None):
  103. """ Measure in an arbitrary basis """
  104. basis = clifford.by_name[basis]
  105. ha = clifford.conjugation_table[self.node[node]["vop"]]
  106. basis, phase = clifford.conjugate(basis, ha)
  107. # Flip a coin
  108. result = force if force!=None else random.choice([0, 1])
  109. # Flip the result if we have negative phase
  110. if phase == -1:
  111. result = not result
  112. if basis == clifford.by_name["px"]:
  113. result = self._measure_x(node, result)
  114. elif basis == clifford.by_name["py"]:
  115. result = self._measure_y(node, result)
  116. elif basis == clifford.by_name["pz"]:
  117. result = self._measure_z(node, result)
  118. else:
  119. raise ValueError("You can only measure in {X,Y,Z}")
  120. # Flip the result if we have negative phase
  121. if phase == -1:
  122. result = not result
  123. return result
  124. def toggle_edges(self, a, b):
  125. """ Toggle edges between vertex sets a and b """
  126. # TODO: i'm pretty sure this is just a single-line it.combinations or equiv
  127. done = set()
  128. for i, j in it.product(a, b):
  129. if i != j and not (i, j) in done:
  130. done.add((i, j))
  131. done.add((j, i))
  132. self.toggle_edge(i, j)
  133. def _measure_x(self, node, result):
  134. """ Measure the graph in the X-basis """
  135. if len(self.adj[node]) == 0:
  136. return 0
  137. # Pick a vertex
  138. #friend = next(self.adj[node].iterkeys())
  139. # TODO this is enforced determinism for testing purposes
  140. friend = sorted(self.adj[node].keys())[0]
  141. # Update the VOPs. TODO: pretty ugly
  142. if result:
  143. # Do a z on all ngb(vb) \ ngb(v) \ {v}, and some other stuff
  144. self._update_vop(friend, "msqy")
  145. self._update_vop(node, "pz")
  146. for n in set(self.adj[friend]) - set(self.adj[node]) - {node}:
  147. self._update_vop(n, "pz")
  148. else:
  149. # Do a z on all ngb(v) \ ngb(vb) \ {vb}, and sqy on the friend
  150. self._update_vop(friend, "sqy")
  151. for n in set(self.adj[node]) - set(self.adj[friend]) - {friend}:
  152. self._update_vop(n, "pz")
  153. # Toggle the edges. TODO: Yuk. Just awful!
  154. a = set(self.adj[node].keys())
  155. b = set(self.adj[friend].keys())
  156. self.toggle_edges(a, b)
  157. intersection = a & b
  158. for i, j in it.combinations(intersection, 2):
  159. self.toggle_edge(i, j)
  160. for n in a - {friend}:
  161. self.toggle_edge(friend, n)
  162. return result
  163. def _measure_y(self, node, result):
  164. """ Measure the graph in the Y-basis """
  165. # Do some rotations
  166. for neighbour in self.adj[node]:
  167. self._update_vop(neighbour, "sqz" if result else "msqz")
  168. # A sort of local complementation
  169. vngbh = set(self.adj[node]) | {node}
  170. for i, j in it.combinations(vngbh, 2):
  171. self.toggle_edge(i, j)
  172. self._update_vop(node, 5 if result else 6) # TODO: naming: # lcoS.herm_adjoint() if result else lcoS
  173. return result
  174. def _measure_z(self, node, result):
  175. """ Measure the graph in the Z-basis """
  176. # Disconnect
  177. for neighbour in tuple(self.adj[node]):
  178. self.del_edge(node, neighbour)
  179. if result:
  180. self._update_vop(neighbour, "pz")
  181. # Rotate
  182. if result:
  183. self._update_vop(node, "px")
  184. self._update_vop(node, "hadamard")
  185. else:
  186. self._update_vop(node, "hadamard")
  187. return result
  188. def order(self):
  189. """ Get the number of qubits """
  190. return len(self.node)
  191. def __str__(self):
  192. """ Represent as a string for quick debugging """
  193. s = ""
  194. for key in sorted(self.node.keys()):
  195. s += "{}: {}\t".format(key, clifford.get_name(self.node[key]["vop"]).replace("YC", "-"))
  196. if self.adj[key]:
  197. s += str(tuple(self.adj[key].keys())).replace(" ", "")
  198. else:
  199. s += "-"
  200. s += "\n"
  201. return s
  202. def to_json(self, stringify=False):
  203. """
  204. Convert the graph to JSON form.
  205. JSON keys must be strings, But sometimes it is useful to have
  206. a JSON-like object whose keys are tuples!
  207. """
  208. if stringify:
  209. node = {str(key): value for key, value in self.node.items()}
  210. adj = {str(key): {str(key): value for key, value in ngbh.items()}
  211. for key, ngbh in self.adj.items()}
  212. return {"node": node, "adj": adj}
  213. else:
  214. return {"node": self.node, "adj": self.adj}
  215. def from_json(self, data):
  216. """ Reconstruct from JSON """
  217. self.__init__([])
  218. # TODO
  219. def to_state_vector(self):
  220. """ Get the full state vector """
  221. if len(self.node) > 15:
  222. raise ValueError("Cannot build state vector: too many qubits")
  223. state = qi.CircuitModel(len(self.node))
  224. for i in range(len(self.node)):
  225. state.act_hadamard(i)
  226. for i, j in self.edgelist():
  227. state.act_cz(i, j)
  228. for i, n in self.node.items():
  229. state.act_local_rotation(i, clifford.unitaries[n["vop"]])
  230. return state
  231. def to_stabilizer(self):
  232. """ Get the stabilizer of this graph """
  233. return
  234. output = {a: {} for a in self.node}
  235. for a, b in it.product(self.node, self.node):
  236. if a == b:
  237. output[a][b] = "X"
  238. elif a in self.adj[b]:
  239. output[a][b] = "Z"
  240. else:
  241. output[a][b] = "I"
  242. # TODO: signs
  243. return output
  244. def __eq__(self, other):
  245. """ Check equality between graphs """
  246. if str(type(other)) == "<class 'anders_briegel.graphsim.GraphRegister'>":
  247. return self.to_json() == other.to_json()
  248. return self.adj == other.adj and self.node == other.node
  249. if __name__ == '__main__':
  250. g = GraphState()
  251. g.add_nodes(range(10))
  252. g.add_edge(0, 5)
  253. g.act_local_rotation(6, 10)
  254. print g
  255. print g.to_state_vector()