|
- #!/usr/bin/python
- # -*- coding: utf-8 -*-
-
- """
- Generates and enumerates the 24 elements of the local Clifford group
- Following the prescription of Anders (thesis pg. 26):
- > Table 2.1: The 24 elements of the local Clifford group. The row index (here called the “sign symbol”) shows how the operator
- > U permutes the Pauli operators σ = X, Y, Z under the conjugation σ = ±UσU† . The column index (the “permutation
- > symbol”) indicates the sign obtained under the conjugation: For operators U in the I column it is the sign of the permutation
- > (indicated on the left). For elements in the X, Y and Z columns, it is this sign only if the conjugated Pauli operator is the one
- > indicated by the column header and the opposite sign otherwise.
- """
-
- # TODO:
- # - check that we re-generate the table
- # - do conjugation
- # - do times table
- # - write tests
-
- from numpy import *
-
-
- def identify_pauli(m):
- """ Given a signed Pauli matrix, name it. """
- for sign in (+1, -1):
- for pauli_label, pauli in zip("xyz", paulis):
- if allclose(sign * pauli, m):
- return sign, pauli_label
-
-
- def get_action(u):
- """ What does this unitary operator do to the Paulis? """
- return [identify_pauli(u * p * u.H) for p in paulis]
-
-
- def format_action(action):
- """ Format an action as a string """
- return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)
-
-
- # Some two-qubit matrices
- i = matrix(eye(2, dtype=complex))
- px = matrix([[0, 1], [1, 0]], dtype=complex)
- py = matrix([[0, -1j], [1j, 0]], dtype=complex)
- pz = matrix([[1, 0], [0, -1]], dtype=complex)
- h = matrix([[1, 1], [1, -1]], dtype=complex) / sqrt(2)
- p = matrix([[1, 0], [0, 1j]], dtype=complex)
- paulis = (px, py, pz)
-
- # Basic single-qubit gates
- s_gates = (("i", i), ("p", p), ("pp", p * p), ("ppp", p * p * p))
- c_gates = [("i", i), ("h", h), ("hp", h * p), ("hpp", h * p * p),
- ("hppp", h * p * p * p), ("hpph", h * p * p * h)]
-
- # Build the table of VOPs according to Anders (verbatim from thesis)
- table = (("a", "xyz", +1), ("b", "yxz", -1), ("c", "zyx", -1),
- ("d", "xzy", -1), ("e", "yzx", +1), ("f", "zxy", +1))
-
- # Build a big ol lookup table
- vop_names = []
- vop_actions = []
- vop_gates = [None] * 24
- vop_unitaries = [None] * 24
-
- for label, permutation, sign in table:
- for column, operator in zip("ixyz", "i" + permutation):
- effect = [((sign if (p == column or column == "i") else -sign), p)
- for p in permutation]
- vop_names.append(column + label) # think we can dump "operator"
- vop_actions.append(format_action(effect))
-
- for s_name, s_gate in s_gates:
- for c_name, c_gate in c_gates:
- u = s_gate * c_gate
- action = format_action(get_action(u))
- index = vop_actions.index(action)
- vop_gates[index] = s_name + c_name
- vop_unitaries[index] = u
-
- # Add some more useful lookups
- vop_by_name = {n: {"name":n, "index": i, "action": a, "gates": g, "unitary": u}
- for n, i, a, g, u in zip(vop_names, xrange(24), vop_actions, vop_gates, vop_unitaries)}
- vop_by_action = {a: {"name": n, "index": i, "action":a, "gates": g, "unitary": u}
- for n, i, a, g, u in zip(vop_names, xrange(24), vop_actions, vop_gates, vop_unitaries)}
|