|
- """
- This program computes lookup tables and stores them as tables.py and tables.js
- # TODO: clifford naming discrepancy
- """
-
- import numpy as np
- from tqdm import tqdm
- import itertools as it
- from functools import reduce
- from os.path import dirname, join, split
- import json
- import qi, clifford
-
-
- DECOMPOSITIONS = (
- "xxxx", "xx", "zzxx", "zz", "zxx", "z", "zzz", "xxz", "xzx", "xzxxx", "xzzzx",
- "xxxzx", "xzz", "zzx", "xxx", "x", "zzzx", "xxzx", "zx", "zxxx", "xxxz", "xzzz", "xz", "xzxx")
-
-
- JS_TEMPLATE = """\
- var tables = {{
- decompositions : {decompositions},
- conjugation_table : {conjugation_table},
- times_table : {times_table},
- cz_table : {cz_table},
- clifford : {by_name},
- measurement_table: {measurement_table}
- }};
- """
-
- PY_TEMPLATE = """\
- import numpy as np
-
- # Define lookup tables
- ir2 = 1/np.sqrt(2)
- decompositions = {decompositions}
- conjugation_table = np.array({conjugation_table}, dtype=int)
- times_table = np.array({times_table}, dtype=int)
- cz_table = np.array({cz_table}, dtype=int)
- by_name = {by_name}
- measurement_table = np.array({measurement_table}, dtype=int)
- unitaries_real = np.array({unitaries_real}, dtype=complex)
- unitaries_imag = np.array({unitaries_imag}, dtype=complex)
-
- # Reconstruct
- unitaries = unitaries_real + 1j*unitaries_imag
- """
-
-
- def find_clifford(needle, haystack):
- """ Find the index of a given u within a list of unitaries, up to a global phase """
- needle = qi.normalize_global_phase(needle)
- for i, t in enumerate(haystack):
- if np.allclose(t, needle):
- return i
- raise IndexError
-
-
- def find_cz(bond, c1, c2, commuters, state_table):
- """ Find the output of a CZ operation """
- # Figure out the target state
- target = qi.cz.dot(state_table[bond, c1, c2])
- target = qi.normalize_global_phase(target)
-
- # Choose the sets to search over
- s1 = commuters if c1 in commuters else xrange(24)
- s2 = commuters if c2 in commuters else xrange(24)
-
- # Find a match
- for bondp, c1p, c2p in it.product([0, 1], s1, s2):
- if np.allclose(target, state_table[bondp, c1p, c2p]):
- return bondp, c1p, c2p
-
- # Didn't find anything - this should never happen
- raise IndexError
-
-
- def compose_u(decomposition):
- """ Get the unitary representation of a particular decomposition """
- matrices = ({"x": qi.msqx, "z": qi.sqz}[c] for c in decomposition)
- output = reduce(np.dot, matrices, np.eye(2, dtype=complex))
- return qi.normalize_global_phase(output)
-
-
- def get_unitaries():
- """ The Clifford group """
- return [compose_u(d) for d in DECOMPOSITIONS]
-
-
- def get_by_name(unitaries, conjugation_table):
- """ Get a lookup table of cliffords by name """
- a = {name: find_clifford(u, unitaries)
- for name, u in qi.by_name.items()}
- a.update({key+"_h": conjugation_table[value] for key, value in a.items()})
- a.update({clifford.get_name(i): i for i in range(24)})
- a.update({i: i for i in range(24)})
- return a
-
-
- def get_conjugation_table(unitaries):
- """ Construct the conjugation table """
- return np.array([find_clifford(qi.hermitian_conjugate(u), unitaries) for u in unitaries], dtype=int)
-
-
- def get_times_table(unitaries):
- """ Construct the times-table """
- return np.array([[find_clifford(u.dot(v), unitaries) for v in unitaries]
- for u in tqdm(unitaries, desc="Building times-table")], dtype=int)
-
-
- def get_state_table(unitaries):
- """ Cache a table of state to speed up a little bit """
- state_table = np.zeros((2, 24, 24, 4), dtype=complex)
- params = list(it.product([0, 1], range(24), range(24)))
- for bond, i, j in tqdm(params, desc="Building state table"):
- state = qi.bond if bond else qi.nobond
- kp = np.kron(unitaries[i], unitaries[j])
- state_table[bond, i, j, :] = qi.normalize_global_phase(
- np.dot(kp, state).T)
- return state_table
-
-
- def get_measurement_entry(operator, unitary):
- """
- Any Clifford group unitary will map an operator A in {I, X, Y, Z}
- to an operator B in +-{I, X, Y, Z}. This finds that mapping.
- """
- matrices = ({"x": qi.msqx, "z": qi.sqz}[c]
- for c in DECOMPOSITIONS[unitary])
- unitary = reduce(np.dot, matrices, np.eye(2, dtype=complex))
- operator = qi.operators[operator]
- new_operator = reduce(np.dot,
- (unitary, operator, qi.hermitian_conjugate(unitary)))
-
- for i, o in enumerate(qi.operators):
- if np.allclose(o, new_operator):
- return i, 1
- elif np.allclose(o, -new_operator):
- return i, -1
-
- raise IndexError
-
-
- def get_measurement_table():
- """
- Compute a table of transform * operation * transform^dagger
- This is pretty unintelligible right now, we should probably compute the phase from unitaries instead
- """
- measurement_table = np.zeros((4, 24, 2), dtype=int)
- for operator, unitary in it.product(range(4), range(24)):
- measurement_table[operator, unitary] = get_measurement_entry(
- operator, unitary)
- return measurement_table
-
-
- def get_commuters(unitaries):
- """ Get the indeces of gates which commute with CZ """
- commuters = (qi.id, qi.pz, qi.ph, qi.hermitian_conjugate(qi.ph))
- return [find_clifford(u, unitaries) for u in commuters]
-
-
- def get_cz_table(unitaries):
- """ Compute the lookup table for the CZ (A&B eq. 9) """
- # Get a cached state table and a list of gates which commute with CZ
- commuters = get_commuters(unitaries)
- state_table = get_state_table(unitaries)
-
- # And now build the CZ table
- cz_table = np.zeros((2, 24, 24, 3), dtype=int)
- rows = list(
- it.product([0, 1], it.combinations_with_replacement(range(24), 2)))
- # CZ is symmetric so we only need combinations
- for bond, (c1, c2) in tqdm(rows, desc="Building CZ table"):
- newbond, c1p, c2p = find_cz(
- bond, c1, c2, commuters, state_table)
- cz_table[bond, c1, c2] = [newbond, c1p, c2p]
- cz_table[bond, c2, c1] = [newbond, c2p, c1p]
- return cz_table
-
- def get_display_table(unitaries):
- """ Used to display VOPs in a human readable style """
- for u in unitaries:
- c = qi.CircuitModel(1)
- c.act_local_rotation(0, u)
- state = c.state.round(2)
- print "{:.2f}, {:.2f}".format(state[0][0], state[1][0])
-
-
- def compute_everything():
- """ Compute all lookup tables """
- unitaries = get_unitaries()
- conjugation_table = get_conjugation_table(unitaries)
- return {"decompositions": DECOMPOSITIONS,
- "unitaries": unitaries,
- "by_name": get_by_name(unitaries, conjugation_table),
- "conjugation_table": conjugation_table,
- "times_table": get_times_table(unitaries),
- "cz_table": get_cz_table(unitaries),
- "measurement_table": get_measurement_table()}
-
-
- def human_readable(data):
- """ Format the data """
- unitaries = np.array(data["unitaries"])
- return {"decompositions": json.dumps(DECOMPOSITIONS),
- "unitaries_real": json.dumps(unitaries.real.round(5).tolist()).replace("0.70711", "ir2"),
- "unitaries_imag": json.dumps(unitaries.imag.round(5).tolist()).replace("0.70711", "ir2"),
- "conjugation_table": json.dumps(data["conjugation_table"].tolist()),
- "times_table": json.dumps(data["times_table"].tolist()),
- "cz_table": json.dumps(data["cz_table"].tolist()),
- "by_name": json.dumps(data["by_name"]),
- "measurement_table": json.dumps(data["measurement_table"].tolist())}
-
-
- def write_python(data):
- """ Write the tables to a python module """
- path = join(dirname(__file__), "tables.py")
- content = PY_TEMPLATE.format(**data)
- with open(path, "w") as f:
- f.write(content)
-
-
- def write_javascript(data):
- """ Write the tables to javascript files for consumption in the browser """
- path = join(split(dirname(__file__))[0], "static/scripts/tables.js")
- content = JS_TEMPLATE.format(**data)
- with open(path, "w") as f:
- f.write(content)
-
-
- if __name__ == '__main__':
- get_display_table(get_unitaries())
- #data = compute_everything()
- #data = human_readable(data)
- #write_python(data)
- #write_javascript(data)
|