Anders and Briegel in Python
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

311 lines
10KB

  1. """
  2. Provides an extremely basic graph structure, based on key/value pairs
  3. """
  4. import itertools as it
  5. import json
  6. import qi, clifford, util
  7. import random
  8. class GraphState(object):
  9. def __init__(self, nodes=[]):
  10. self.adj, self.node = {}, {}
  11. self.add_nodes(nodes)
  12. def add_node(self, v, **kwargs):
  13. """ Add a node """
  14. assert not v in self.node
  15. self.adj[v] = {}
  16. self.node[v] = {"vop": clifford.by_name["hadamard"]}
  17. self.node[v].update(kwargs)
  18. def add_nodes(self, nodes):
  19. """ Add a buncha nodes """
  20. for n in nodes:
  21. self.add_node(n)
  22. def add_edge(self, v1, v2, data={}):
  23. """ Add an edge between two vertices in the self """
  24. assert v1 != v2
  25. self.adj[v1][v2] = data
  26. self.adj[v2][v1] = data
  27. def add_edges(self, edges):
  28. """ Add a buncha edges """
  29. for (v1, v2) in edges:
  30. self.add_edge(v1, v2)
  31. def del_edge(self, v1, v2):
  32. """ Delete an edge between two vertices in the self """
  33. del self.adj[v1][v2]
  34. del self.adj[v2][v1]
  35. def has_edge(self, v1, v2):
  36. """ Test existence of an edge between two vertices in the self """
  37. return v2 in self.adj[v1]
  38. def toggle_edge(self, v1, v2):
  39. """ Toggle an edge between two vertices in the self """
  40. if self.has_edge(v1, v2):
  41. self.del_edge(v1, v2)
  42. else:
  43. self.add_edge(v1, v2)
  44. def edgelist(self):
  45. """ Describe a graph as an edgelist """
  46. # TODO: inefficient
  47. edges = set(tuple(sorted((i, n)))
  48. for i, v in self.adj.items()
  49. for n in v)
  50. return tuple(edges)
  51. def remove_vop(self, a, avoid):
  52. """ Reduces VOP[a] to the identity """
  53. others = set(self.adj[a]) - {avoid}
  54. #TODO: this is a hack for determinsim. remove
  55. swap_qubit = min(others) if others else avoid
  56. #swap_qubit = others.pop() if others else avoid # TODO: maybe this is the only problematic part
  57. #print "SWAPPING WITH {} (options were {})".format(swap_qubit, tuple(others))
  58. for v in reversed(clifford.decompositions[self.node[a]["vop"]]):
  59. if v == "x":
  60. self.local_complementation(a, "U ->")
  61. else:
  62. self.local_complementation(swap_qubit, "V ->")
  63. def local_complementation(self, v, prefix=""):
  64. """ As defined in LISTING 1 of Anders & Briegel """
  65. for i, j in it.combinations(self.adj[v], 2):
  66. self.toggle_edge(i, j)
  67. self.node[v]["vop"] = clifford.times_table[
  68. self.node[v]["vop"], clifford.by_name["msqx_h"]]
  69. for i in self.adj[v]:
  70. self.node[i]["vop"] = clifford.times_table[
  71. self.node[i]["vop"], clifford.by_name["sqz_h"]]
  72. def act_local_rotation(self, v, op):
  73. """ Act a local rotation """
  74. rotation = clifford.by_name[str(op)]
  75. self.node[v]["vop"] = clifford.times_table[
  76. rotation, self.node[v]["vop"]]
  77. def act_hadamard(self, qubit):
  78. """ Shorthand """
  79. self.act_local_rotation(qubit, 10)
  80. def lonely(self, a, b):
  81. """ Is this qubit lonely ? """
  82. return len(self.adj[a]) > (b in self.adj[a])
  83. def act_cz(self, a, b):
  84. """ Act a controlled-phase gate on two qubits """
  85. if self.lonely(a, b):
  86. self.remove_vop(a, b)
  87. if self.lonely(b, a):
  88. self.remove_vop(b, a)
  89. if self.lonely(a, b) and not clifford.is_diagonal(self.node[a]["vop"]):
  90. self.remove_vop(a, b)
  91. edge = self.has_edge(a, b)
  92. va = self.node[a]["vop"]
  93. vb = self.node[b]["vop"]
  94. new_edge, self.node[a]["vop"], self.node[b]["vop"] = \
  95. clifford.cz_table[int(edge), va, vb]
  96. if new_edge != edge:
  97. self.toggle_edge(a, b)
  98. def measure(self, node, basis, force=None):
  99. """ Measure in an arbitrary basis """
  100. basis = clifford.by_name[basis]
  101. ha = clifford.conjugation_table[self.node[node]["vop"]]
  102. basis, phase = clifford.conjugate(basis, ha)
  103. # Flip a coin
  104. result = force if force!=None else random.choice([0, 1])
  105. # Flip the result if we have negative phase
  106. if phase == -1:
  107. result = not result
  108. if basis == clifford.by_name["px"]:
  109. result = self.measure_x(node, result)
  110. elif basis == clifford.by_name["py"]:
  111. result = self.measure_y(node, result)
  112. elif basis == clifford.by_name["pz"]:
  113. result = self.measure_z(node, result)
  114. else:
  115. raise ValueError("You can only measure in {X,Y,Z}")
  116. # Flip the result if we have negative phase
  117. if phase == -1:
  118. result = not result
  119. return result
  120. def toggle_edges(self, a, b):
  121. """ Toggle edges between vertex sets a and b """
  122. # TODO: i'm pretty sure this is just a single-line it.combinations or equiv
  123. done = set()
  124. for i, j in it.product(a, b):
  125. if i != j and not (i, j) in done:
  126. done.add((i, j))
  127. done.add((j, i))
  128. self.toggle_edge(i, j)
  129. def measure_x(self, node, result):
  130. """ Measure the graph in the X-basis """
  131. if len(self.adj[node]) == 0:
  132. return 0
  133. # Pick a vertex
  134. #friend = next(self.adj[node].iterkeys())
  135. # TODO this is enforced determinism for testing purposes
  136. friend = sorted(self.adj[node].keys())[0]
  137. # Update the VOPs. TODO: pretty ugly
  138. if result:
  139. # Do a z on all ngb(vb) \ ngb(v) \ {v}, and some other stuff
  140. self.act_local_rotation(node, "pz")
  141. self.act_local_rotation(friend, "msqy")
  142. for n in set(self.adj[friend]) - set(self.adj[node]) - {node}:
  143. self.act_local_rotation(n, "pz")
  144. else:
  145. # Do a z on all ngb(v) \ ngb(vb) \ {vb}, and sqy on the friend
  146. self.act_local_rotation(friend, "sqy")
  147. for n in set(self.adj[node]) - set(self.adj[friend]) - {friend}:
  148. self.act_local_rotation(n, "pz")
  149. # Toggle the edges. TODO: Yuk. Just awful!
  150. a = set(self.adj[node].keys())
  151. b = set(self.adj[friend].keys())
  152. self.toggle_edges(a, b)
  153. intersection = a & b
  154. for i, j in it.combinations(intersection, 2):
  155. self.toggle_edge(i, j)
  156. for n in a - {friend}:
  157. self.toggle_edge(friend, n)
  158. return result
  159. def measure_y(self, node, result):
  160. """ Measure the graph in the Y-basis """
  161. # Do some rotations
  162. for neighbour in self.adj[node]:
  163. # NB: should these be hermitian_conjugated?
  164. self.act_local_rotation(neighbour, "sqz" if result else "msqz")
  165. # A sort of local complementation
  166. vngbh = set(self.adj[node]) | {node}
  167. for i, j in it.combinations(vngbh, 2):
  168. self.toggle_edge(i, j)
  169. self.act_local_rotation(node, "sqz" if result else "msqz")
  170. return result
  171. def measure_z(self, node, result):
  172. """ Measure the graph in the Z-basis """
  173. # Disconnect
  174. for neighbour in tuple(self.adj[node]):
  175. self.del_edge(node, neighbour)
  176. if result:
  177. self.act_local_rotation(neighbour, "pz")
  178. # Rotate
  179. self.act_local_rotation(node, "hadamard")
  180. if result:
  181. self.act_local_rotation(node, "px")
  182. return result
  183. def order(self):
  184. """ Get the number of qubits """
  185. return len(self.node)
  186. def __str__(self):
  187. """ Represent as a string for quick debugging """
  188. s = ""
  189. for key in sorted(self.node.keys()):
  190. s += "{}: {}\t".format(key, clifford.get_name(self.node[key]["vop"]).replace("YC", "-"))
  191. if self.adj[key]:
  192. s += str(tuple(self.adj[key].keys())).replace(" ", "")
  193. else:
  194. s += "-"
  195. s += "\n"
  196. return s
  197. #clean = lambda n: str(n["vop"])
  198. #nodes = ("{}: {}".format(key, clean(value)) for key, value in sorted(self.node.items()))
  199. #nodes = "\n".join(nodes)
  200. #return "Nodes:\n{}\n\nEdges:\n{}".format(nodes, "")
  201. #node = {key: clifford.get_name(value["vop"])
  202. #for key, value in self.node.items()}
  203. #nbstr = str(self.adj)
  204. #return "graph:\n node: {}\n adj: {}\n".format(node, nbstr)
  205. def to_json(self, stringify=False):
  206. """
  207. Convert the graph to JSON form.
  208. JSON keys must be strings, But sometimes it is useful to have
  209. a JSON-like object whose keys are tuples!
  210. """
  211. if stringify:
  212. node = {str(key): value for key, value in self.node.items()}
  213. adj = {str(key): {str(key): value for key, value in ngbh.items()}
  214. for key, ngbh in self.adj.items()}
  215. return {"node": node, "adj": adj}
  216. else:
  217. return {"node": self.node, "adj": self.adj}
  218. def from_json(self, data):
  219. """ Reconstruct from JSON """
  220. self.__init__([])
  221. # TODO
  222. def to_state_vector(self):
  223. """ Get the full state vector """
  224. if len(self.node) > 15:
  225. raise ValueError("Cannot build state vector: too many qubits")
  226. state = qi.CircuitModel(len(self.node))
  227. for i in range(len(self.node)):
  228. state.act_hadamard(i)
  229. for i, j in self.edgelist():
  230. state.act_cz(i, j)
  231. for i, n in self.node.items():
  232. state.act_local_rotation(i, clifford.unitaries[n["vop"]])
  233. return state
  234. def to_stabilizer(self):
  235. """ Get the stabilizer of this graph """
  236. return
  237. output = {a: {} for a in self.node}
  238. for a, b in it.product(self.node, self.node):
  239. if a == b:
  240. output[a][b] = "X"
  241. elif a in self.adj[b]:
  242. output[a][b] = "Z"
  243. else:
  244. output[a][b] = "I"
  245. # TODO: signs
  246. return output
  247. def __eq__(self, other):
  248. """ Check equality between graphs """
  249. if str(type(other)) == "<class 'anders_briegel.graphsim.GraphRegister'>":
  250. return self.to_json() == other.to_json()
  251. return self.adj == other.adj and self.node == other.node
  252. if __name__ == '__main__':
  253. g = GraphState()
  254. g.add_nodes(range(10))
  255. g.add_edge(0, 5)
  256. g.act_local_rotation(6, 10)
  257. print g
  258. print g.to_state_vector()