Anders and Briegel in Python
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

67 lignes
2.5KB

  1. #!/usr/bin/python
  2. # -*- coding: utf-8 -*-
  3. """
  4. Generates and enumerates the 24 elements of the local Clifford group
  5. Following the prescription of Anders (thesis pg. 26):
  6. > Table 2.1: The 24 elements of the local Clifford group. The row index (here called the “sign symbol”) shows how the operator
  7. > U permutes the Pauli operators σ = X, Y, Z under the conjugation σ = ±UσU† . The column index (the “permutation
  8. > symbol”) indicates the sign obtained under the conjugation: For operators U in the I column it is the sign of the permutation
  9. > (indicated on the left). For elements in the X, Y and Z columns, it is this sign only if the conjugated Pauli operator is the one
  10. > indicated by the column header and the opposite sign otherwise.
  11. """
  12. # TODO:
  13. # - check that we re-generate the table
  14. # - sort of re-map to an ordering
  15. # - do conjugation
  16. # - do times table
  17. # - write tests
  18. from numpy import *
  19. def identify_pauli(m):
  20. """ Given a signed Pauli matrix, name it. """
  21. for sign in (+1, -1):
  22. for pauli_label, pauli in zip("xyz", paulis):
  23. if allclose(sign*pauli, m):
  24. return sign, pauli_label
  25. def anders_sign_rule(sign, column, p):
  26. """ Anders' sign rule from thesis """
  27. return sign if (p==column or column=="i") else -sign, p
  28. def format_action(action):
  29. return "".join("{}{}".format("+" if s>=0 else "-", p) for s, p in action)
  30. # Some two-qubit matrices
  31. i = matrix(eye(2, dtype=complex))
  32. px = matrix([[0, 1], [1, 0]], dtype=complex)
  33. py = matrix([[0, -1j], [1j, 0]], dtype=complex)
  34. pz = matrix([[1, 0], [0, -1]], dtype=complex)
  35. h = matrix([[1, 1], [1, -1]], dtype=complex) / sqrt(2)
  36. p = matrix([[1, 0], [0, 1j]], dtype=complex)
  37. paulis = (px, py, pz)
  38. # More two-qubit matrices
  39. s_rotations = [i, p, p*p, p*p*p]
  40. s_names = ["i", "p", "pp", "ppp"]
  41. c_rotations = [i, h, h*p, h*p*p, h*p*p*p, h*p*p*h]
  42. c_names = ["i", "h", "hp", "hpp", "hppp", "hpph"]
  43. # Build the table of VOPs according to Anders (verbatim from thesis)
  44. table = (("a", "xyz", +1), ("b", "yxz", -1), ("c", "zyx", -1),
  45. ("d", "xzy", -1), ("e", "yxz", +1), ("f", "zxy", +1))
  46. for label, permutation, sign in table:
  47. for column, operator in zip("ixyz", "i"+permutation):
  48. effect = [anders_sign_rule(sign, column, p) for p in "xyz"]
  49. print label+operator, format_action(effect)
  50. for s, sn in zip(s_rotations, s_names):
  51. for c, cn in zip(c_rotations, c_names):
  52. u = s*c
  53. action = tuple(identify_pauli(u*p*u.H) for p in paulis)
  54. print cn, sn, format_action(action)