|
- from numpy import *
- from scipy.linalg import sqrtm
- from tqdm import tqdm
- import itertools as it
- from abp import clifford
- from abp import qi
- from nose.tools import raises
-
-
- def identify_pauli(m):
- """ Given a signed Pauli matrix, name it. """
- for sign in (+1, -1):
- for pauli_label, pauli in zip("xyz", qi.paulis):
- if allclose(sign * pauli, m):
- return sign, pauli_label
-
-
- def test_find_clifford():
- """ Test that slightly suspicious function """
- assert clifford.find_clifford(qi.id, clifford.unitaries) == 0
- assert clifford.find_clifford(qi.px, clifford.unitaries) == 1
-
-
- @raises(IndexError)
- def test_find_non_clifford():
- """ Test that looking for a non-Clifford gate fails """
- clifford.find_clifford(qi.t, clifford.unitaries)
-
-
- def get_action(u):
- """ What does this unitary operator do to the Paulis? """
- return [identify_pauli(u.dot(p.dot(qi.hermitian_conjugate(u)))) for p in qi.paulis]
-
-
- def format_action(action):
- return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)
-
-
- def test_we_have_24_matrices():
- """ Check that we have 24 unique actions on the Bloch sphere """
- actions = set(tuple(get_action(u)) for u in clifford.unitaries)
- assert len(set(actions)) == 24
-
-
- def test_we_have_all_useful_gates():
- """ Check that all the interesting gates are included up to a global phase """
- for name, u in qi.by_name.items():
- clifford.find_clifford(u, clifford.unitaries)
-
-
- def test_group():
- """ Test we are really in a group """
- matches = set()
- for a, b in tqdm(it.combinations(clifford.unitaries, 2), "Testing this is a group"):
- i = clifford.find_clifford(a.dot(b), clifford.unitaries)
- matches.add(i)
- assert len(matches) == 24
-
-
- def test_conjugation_table():
- """ Check that the table of Hermitian conjugates is okay """
- assert len(set(clifford.conjugation_table)) == 24
-
-
- def test_times_table():
- """ Check the times table """
- assert clifford.times_table[0][4] == 4
-
-
- def test_cz_table_is_symmetric():
- """ Test the CZ table is symmetric """
- for bond, (a, b) in it.product([0, 1], it.combinations(xrange(24), 2)):
- _, a1, a2 = clifford.cz_table[bond, a, b]
- _, b1, b2 = clifford.cz_table[bond, b, a]
- assert (a1, a2) == (b2, b1)
-
-
- def test_cz_table_makes_sense():
- """ Test the CZ table is symmetric """
- hadamard = clifford.by_name["hadamard"]
- assert all(clifford.cz_table[0, 0, 0] == [1, 0, 0])
- assert all(clifford.cz_table[1, 0, 0] == [0, 0, 0])
- assert all(
- clifford.cz_table[0, hadamard, hadamard] == [0, hadamard, hadamard])
|