Anders and Briegel in Python
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

44 lignes
1.8KB

  1. #!/usr/bin/python
  2. # -*- coding: utf-8 -*-
  3. """
  4. Generates and enumerates the 24 elements of the local Clifford group
  5. Following the prescription of Anders (thesis pg. 26):
  6. > Table 2.1: The 24 elements of the local Clifford group. The row index (here called the “sign symbol”) shows how the operator
  7. > U permutes the Pauli operators σ = X, Y, Z under the conjugation σ = ±UσU† . The column index (the “permutation
  8. > symbol”) indicates the sign obtained under the conjugation: For operators U in the I column it is the sign of the permutation
  9. > (indicated on the left). For elements in the X, Y and Z columns, it is this sign only if the conjugated Pauli operator is the one
  10. > indicated by the column header and the opposite sign otherwise.
  11. """
  12. from numpy import *
  13. from tqdm import tqdm
  14. def find_up_to_phase(u):
  15. """ Find the index of a given u within a list of unitaries, up to a global phase """
  16. global unitaries
  17. for i, t in enumerate(unitaries):
  18. for phase in range(8):
  19. if allclose(t, exp(1j*phase*pi/4.)*u):
  20. return i, phase
  21. raise IndexError
  22. def construct_tables():
  23. """ Constructs multiplication and conjugation tables """
  24. permutations = (id, ha, ph, ha*ph, ha*ph*ha, ha*ph*ha*ph)
  25. signs = (id, px, py, pz)
  26. unitaries = [p*s for p in permutations for s in signs]
  27. conjugation_table = [find_up_to_phase(u.H)[0] for i, u in enumerate(unitaries)]
  28. times_table = [[find_up_to_phase(u*v)[0] for v in unitaries]
  29. for u in tqdm(unitaries, "Building times-table")]
  30. id = matrix(eye(2, dtype=complex))
  31. px = matrix([[0, 1], [1, 0]], dtype=complex)
  32. py = matrix([[0, -1j], [1j, 0]], dtype=complex)
  33. pz = matrix([[1, 0], [0, -1]], dtype=complex)
  34. ha = matrix([[1, 1], [1, -1]], dtype=complex) / sqrt(2)
  35. ph = matrix([[1, 0], [0, 1j]], dtype=complex)