Anders and Briegel in Python
Du kannst nicht mehr als 25 Themen auswählen Themen müssen entweder mit einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

123 Zeilen
3.8KB

  1. import numpy as np
  2. from tqdm import tqdm
  3. import itertools as it
  4. from abp import clifford
  5. from abp import build_tables
  6. from abp import qi
  7. import nose
  8. from nose.tools import raises
  9. def identify_pauli(m):
  10. """ Given a signed Pauli matrix, name it. """
  11. for sign in (+1, -1):
  12. for pauli_label, pauli in zip("xyz", qi.paulis):
  13. if np.allclose(sign * pauli, m):
  14. return sign, pauli_label
  15. def test_find_clifford():
  16. """ Test that slightly suspicious function """
  17. assert build_tables.find_clifford(qi.id, clifford.unitaries) == 0
  18. assert build_tables.find_clifford(qi.px, clifford.unitaries) == 1
  19. @raises(IndexError)
  20. def test_find_non_clifford():
  21. """ Test that looking for a non-Clifford gate fails """
  22. build_tables.find_clifford(qi.t, clifford.unitaries)
  23. def get_action(u):
  24. """ What does this unitary operator do to the Paulis? """
  25. return [identify_pauli(u.dot(p.dot(qi.hermitian_conjugate(u)))) for p in qi.paulis]
  26. def format_action(action):
  27. return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)
  28. def test_we_have_24_matrices():
  29. """ Check that we have 24 unique actions on the Bloch sphere """
  30. actions = set(tuple(get_action(u)) for u in clifford.unitaries)
  31. assert len(set(actions)) == 24
  32. def test_we_have_all_useful_gates():
  33. """ Check that all the interesting gates are included up to a global phase """
  34. for name, u in qi.by_name.items():
  35. build_tables.find_clifford(u, clifford.unitaries)
  36. def test_group():
  37. """ Test we are really in a group """
  38. matches = set()
  39. for a, b in tqdm(it.combinations(clifford.unitaries, 2), "Testing this is a group"):
  40. i = build_tables.find_clifford(a.dot(b), clifford.unitaries)
  41. matches.add(i)
  42. assert len(matches) == 24
  43. def test_conjugation_table():
  44. """ Check that the table of Hermitian conjugates is okay """
  45. assert len(set(clifford.conjugation_table)) == 24
  46. def test_cz_table_makes_sense():
  47. """ Test the CZ table is symmetric """
  48. hadamard = clifford.hadamard
  49. assert all(clifford.cz_table[0, 0, 0] == [1, 0, 0])
  50. assert all(clifford.cz_table[1, 0, 0] == [0, 0, 0])
  51. assert all(
  52. clifford.cz_table[0, hadamard, hadamard] == [0, hadamard, hadamard])
  53. def test_commuters():
  54. """ Test that commutation is good """
  55. assert len(build_tables.get_commuters(clifford.unitaries)) == 4
  56. def test_conjugation():
  57. """ Test that clifford.conugate() agrees with graphsim.LocCliffOp.conjugate """
  58. try:
  59. from anders_briegel import graphsim
  60. except ImportError:
  61. raise nose.SkipTest("Original C++ is not available, skipping test")
  62. for operation_index, transform_index in it.product(range(4), range(24)):
  63. transform = graphsim.LocCliffOp(transform_index)
  64. operation = graphsim.LocCliffOp(operation_index)
  65. phase = operation.conjugate(transform).ph
  66. phase = [1, 0, -1][phase]
  67. new_operation = operation.op
  68. NEW_OPERATION, PHASE = clifford.conjugate(
  69. operation_index, transform_index)
  70. assert new_operation == NEW_OPERATION
  71. assert PHASE == phase
  72. def test_cz_table():
  73. """ Does the CZ code work good? """
  74. state_table = build_tables.get_state_table(clifford.unitaries)
  75. rows = it.product([0, 1], it.combinations_with_replacement(range(24), 2))
  76. for bond, (c1, c2) in rows:
  77. # Pick the input state
  78. input_state = state_table[bond, c1, c2]
  79. # Go and compute the output
  80. computed_output = np.dot(qi.cz, input_state)
  81. computed_output = qi.normalize_global_phase(computed_output)
  82. # Now look up the answer in the table
  83. bondp, c1p, c2p = clifford.cz_table[bond, c1, c2]
  84. table_output = state_table[bondp, c1p, c2p]
  85. assert np.allclose(computed_output, table_output)