Anders and Briegel in Python
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

16 строки
18KB

  1. import numpy as np
  2. # Define lookup tables
  3. ir2 = 1/np.sqrt(2)
  4. decompositions = ["xxxx", "xx", "zzxx", "zz", "zxx", "z", "zzz", "xxz", "xzx", "xzxxx", "xzzzx", "xxxzx", "xzz", "zzx", "xxx", "x", "zzzx", "xxzx", "zx", "zxxx", "xxxz", "xzzz", "xz", "xzxx"]
  5. conjugation_table = np.array([0, 1, 2, 3, 4, 6, 5, 7, 8, 11, 10, 9, 12, 13, 15, 14, 20, 22, 23, 21, 16, 19, 17, 18], dtype=int)
  6. times_table = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], [1, 0, 3, 2, 6, 7, 4, 5, 11, 10, 9, 8, 13, 12, 15, 14, 19, 18, 17, 16, 22, 23, 20, 21], [2, 3, 0, 1, 5, 4, 7, 6, 10, 11, 8, 9, 15, 14, 13, 12, 17, 16, 19, 18, 23, 22, 21, 20], [3, 2, 1, 0, 7, 6, 5, 4, 9, 8, 11, 10, 14, 15, 12, 13, 18, 19, 16, 17, 21, 20, 23, 22], [4, 5, 6, 7, 0, 1, 2, 3, 20, 21, 22, 23, 16, 17, 18, 19, 12, 13, 14, 15, 8, 9, 10, 11], [5, 4, 7, 6, 2, 3, 0, 1, 23, 22, 21, 20, 17, 16, 19, 18, 15, 14, 13, 12, 10, 11, 8, 9], [6, 7, 4, 5, 1, 0, 3, 2, 22, 23, 20, 21, 19, 18, 17, 16, 13, 12, 15, 14, 11, 10, 9, 8], [7, 6, 5, 4, 3, 2, 1, 0, 21, 20, 23, 22, 18, 19, 16, 17, 14, 15, 12, 13, 9, 8, 11, 10], [8, 9, 10, 11, 16, 17, 18, 19, 0, 1, 2, 3, 20, 21, 22, 23, 4, 5, 6, 7, 12, 13, 14, 15], [9, 8, 11, 10, 18, 19, 16, 17, 3, 2, 1, 0, 21, 20, 23, 22, 7, 6, 5, 4, 14, 15, 12, 13], [10, 11, 8, 9, 17, 16, 19, 18, 2, 3, 0, 1, 23, 22, 21, 20, 5, 4, 7, 6, 15, 14, 13, 12], [11, 10, 9, 8, 19, 18, 17, 16, 1, 0, 3, 2, 22, 23, 20, 21, 6, 7, 4, 5, 13, 12, 15, 14], [12, 13, 14, 15, 20, 21, 22, 23, 16, 17, 18, 19, 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7], [13, 12, 15, 14, 22, 23, 20, 21, 19, 18, 17, 16, 1, 0, 3, 2, 11, 10, 9, 8, 6, 7, 4, 5], [14, 15, 12, 13, 21, 20, 23, 22, 18, 19, 16, 17, 3, 2, 1, 0, 9, 8, 11, 10, 7, 6, 5, 4], [15, 14, 13, 12, 23, 22, 21, 20, 17, 16, 19, 18, 2, 3, 0, 1, 10, 11, 8, 9, 5, 4, 7, 6], [16, 17, 18, 19, 8, 9, 10, 11, 12, 13, 14, 15, 4, 5, 6, 7, 20, 21, 22, 23, 0, 1, 2, 3], [17, 16, 19, 18, 10, 11, 8, 9, 15, 14, 13, 12, 5, 4, 7, 6, 23, 22, 21, 20, 2, 3, 0, 1], [18, 19, 16, 17, 9, 8, 11, 10, 14, 15, 12, 13, 7, 6, 5, 4, 21, 20, 23, 22, 3, 2, 1, 0], [19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 15, 14, 6, 7, 4, 5, 22, 23, 20, 21, 1, 0, 3, 2], [20, 21, 22, 23, 12, 13, 14, 15, 4, 5, 6, 7, 8, 9, 10, 11, 0, 1, 2, 3, 16, 17, 18, 19], [21, 20, 23, 22, 14, 15, 12, 13, 7, 6, 5, 4, 9, 8, 11, 10, 3, 2, 1, 0, 18, 19, 16, 17], [22, 23, 20, 21, 13, 12, 15, 14, 6, 7, 4, 5, 11, 10, 9, 8, 1, 0, 3, 2, 19, 18, 17, 16], [23, 22, 21, 20, 15, 14, 13, 12, 5, 4, 7, 6, 10, 11, 8, 9, 2, 3, 0, 1, 17, 16, 19, 18]], dtype=int)
  7. cz_table = np.array([[[[1, 0, 0], [1, 0, 0], [1, 0, 3], [1, 0, 3], [1, 0, 5], [1, 0, 5], [1, 0, 6], [1, 0, 6], [0, 3, 8], [0, 3, 8], [0, 0, 10], [0, 0, 10], [1, 0, 3], [1, 0, 3], [1, 0, 0], [1, 0, 0], [1, 0, 6], [1, 0, 6], [1, 0, 5], [1, 0, 5], [0, 0, 10], [0, 0, 10], [0, 3, 8], [0, 3, 8]], [[1, 0, 0], [1, 0, 0], [1, 0, 3], [1, 0, 3], [1, 0, 5], [1, 0, 5], [1, 0, 6], [1, 0, 6], [0, 2, 8], [0, 2, 8], [0, 0, 10], [0, 0, 10], [1, 0, 3], [1, 0, 3], [1, 0, 0], [1, 0, 0], [1, 0, 6], [1, 0, 6], [1, 0, 5], [1, 0, 5], [0, 0, 10], [0, 0, 10], [0, 2, 8], [0, 2, 8]], [[1, 3, 0], [1, 3, 0], [1, 2, 0], [1, 2, 0], [1, 0, 4], [1, 2, 6], [1, 2, 5], [1, 0, 7], [0, 0, 8], [0, 0, 8], [0, 2, 10], [0, 2, 10], [1, 0, 2], [1, 0, 2], [1, 0, 1], [1, 0, 1], [1, 0, 7], [1, 0, 7], [1, 0, 4], [1, 0, 4], [0, 2, 10], [0, 2, 10], [0, 0, 8], [0, 0, 8]], [[1, 3, 0], [1, 3, 0], [1, 0, 2], [1, 3, 3], [1, 0, 4], [1, 3, 5], [1, 3, 6], [1, 0, 7], [0, 0, 8], [0, 0, 8], [0, 3, 10], [0, 3, 10], [1, 0, 2], [1, 0, 2], [1, 0, 1], [1, 0, 1], [1, 0, 7], [1, 0, 7], [1, 0, 4], [1, 0, 4], [0, 3, 10], [0, 3, 10], [0, 0, 8], [0, 0, 8]], [[1, 5, 0], [1, 5, 0], [1, 4, 0], [1, 4, 0], [1, 19, 0], [1, 4, 6], [1, 4, 5], [1, 0, 17], [0, 6, 8], [0, 6, 8], [0, 4, 10], [0, 4, 10], [1, 0, 12], [1, 0, 12], [1, 0, 14], [1, 0, 14], [1, 0, 17], [1, 0, 17], [1, 0, 19], [1, 0, 19], [0, 4, 10], [0, 4, 10], [0, 6, 8], [0, 6, 8]], [[1, 5, 0], [1, 5, 0], [1, 6, 2], [1, 5, 3], [1, 6, 4], [1, 5, 5], [1, 5, 6], [1, 0, 17], [0, 6, 8], [0, 6, 8], [0, 5, 10], [0, 5, 10], [1, 0, 12], [1, 0, 12], [1, 0, 14], [1, 0, 14], [1, 0, 17], [1, 0, 17], [1, 0, 19], [1, 0, 19], [0, 5, 10], [0, 5, 10], [0, 6, 8], [0, 6, 8]], [[1, 6, 0], [1, 6, 0], [1, 5, 2], [1, 6, 3], [1, 5, 4], [1, 6, 5], [1, 6, 6], [1, 0, 16], [0, 5, 8], [0, 5, 8], [0, 6, 10], [0, 6, 10], [1, 0, 13], [1, 0, 13], [1, 0, 15], [1, 0, 15], [1, 0, 16], [1, 0, 16], [1, 0, 18], [1, 0, 18], [0, 6, 10], [0, 6, 10], [0, 5, 8], [0, 5, 8]], [[1, 6, 0], [1, 6, 0], [1, 7, 0], [1, 7, 0], [1, 17, 0], [1, 17, 0], [1, 16, 0], [1, 16, 0], [0, 4, 8], [0, 4, 8], [0, 6, 10], [0, 6, 10], [1, 0, 13], [1, 0, 13], [1, 0, 15], [1, 0, 15], [1, 0, 16], [1, 0, 16], [1, 0, 18], [1, 0, 18], [0, 6, 10], [0, 6, 10], [0, 4, 8], [0, 4, 8]], [[0, 8, 3], [0, 8, 2], [0, 8, 0], [0, 8, 0], [0, 8, 6], [0, 8, 6], [0, 8, 5], [0, 8, 4], [0, 8, 8], [0, 8, 8], [0, 8, 10], [0, 8, 10], [0, 8, 0], [0, 8, 0], [0, 8, 2], [0, 8, 2], [0, 8, 4], [0, 8, 4], [0, 8, 6], [0, 8, 6], [0, 8, 10], [0, 8, 10], [0, 8, 8], [0, 8, 8]], [[0, 8, 3], [0, 8, 2], [0, 8, 0], [0, 8, 0], [0, 8, 6], [0, 8, 6], [0, 8, 5], [0, 8, 4], [0, 8, 8], [0, 8, 8], [0, 8, 10], [0, 8, 10], [0, 8, 0], [0, 8, 0], [0, 8, 2], [0, 8, 2], [0, 8, 4], [0, 8, 4], [0, 8, 6], [0, 8, 6], [0, 8, 10], [0, 8, 10], [0, 8, 8], [0, 8, 8]], [[0, 10, 0], [0, 10, 0], [0, 10, 2], [0, 10, 3], [0, 10, 4], [0, 10, 5], [0, 10, 6], [0, 10, 6], [0, 10, 8], [0, 10, 8], [0, 10, 10], [0, 10, 10], [0, 10, 2], [0, 10, 2], [0, 10, 0], [0, 10, 0], [0, 10, 6], [0, 10, 6], [0, 10, 4], [0, 10, 4], [0, 10, 10], [0, 10, 10], [0, 10, 8], [0, 10, 8]], [[0, 10, 0], [0, 10, 0], [0, 10, 2], [0, 10, 3], [0, 10, 4], [0, 10, 5], [0, 10, 6], [0, 10, 6], [0, 10, 8], [0, 10, 8], [0, 10, 10], [0, 10, 10], [0, 10, 2], [0, 10, 2], [0, 10, 0], [0, 10, 0], [0, 10, 6], [0, 10, 6], [0, 10, 4], [0, 10, 4], [0, 10, 10], [0, 10, 10], [0, 10, 8], [0, 10, 8]], [[1, 3, 0], [1, 3, 0], [1, 2, 0], [1, 2, 0], [1, 12, 0], [1, 12, 0], [1, 13, 0], [1, 13, 0], [0, 0, 8], [0, 0, 8], [0, 2, 10], [0, 2, 10], [1, 2, 0], [1, 0, 2], [1, 0, 1], [1, 0, 1], [1, 0, 7], [1, 0, 7], [1, 0, 4], [1, 0, 4], [0, 2, 10], [0, 2, 10], [0, 0, 8], [0, 0, 8]], [[1, 3, 0], [1, 3, 0], [1, 2, 0], [1, 2, 0], [1, 12, 0], [1, 12, 0], [1, 13, 0], [1, 13, 0], [0, 0, 8], [0, 0, 8], [0, 2, 10], [0, 2, 10], [1, 2, 0], [1, 2, 0], [1, 0, 1], [1, 0, 1], [1, 0, 7], [1, 0, 7], [1, 0, 4], [1, 0, 4], [0, 2, 10], [0, 2, 10], [0, 0, 8], [0, 0, 8]], [[1, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 0], [1, 14, 0], [1, 14, 0], [1, 15, 0], [1, 15, 0], [0, 2, 8], [0, 2, 8], [0, 0, 10], [0, 0, 10], [1, 1, 0], [1, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 6], [1, 0, 6], [1, 0, 5], [1, 0, 5], [0, 0, 10], [0, 0, 10], [0, 2, 8], [0, 2, 8]], [[1, 0, 0], [1, 0, 0], [1, 1, 0], [1, 1, 0], [1, 14, 0], [1, 14, 0], [1, 15, 0], [1, 15, 0], [0, 2, 8], [0, 2, 8], [0, 0, 10], [0, 0, 10], [1, 1, 0], [1, 1, 0], [1, 0, 0], [1, 0, 0], [1, 0, 6], [1, 0, 6], [1, 0, 5], [1, 0, 5], [0, 0, 10], [0, 0, 10], [0, 2, 8], [0, 2, 8]], [[1, 6, 0], [1, 6, 0], [1, 7, 0], [1, 7, 0], [1, 17, 0], [1, 17, 0], [1, 16, 0], [1, 16, 0], [0, 4, 8], [0, 4, 8], [0, 6, 10], [0, 6, 10], [1, 7, 0], [1, 7, 0], [1, 6, 0], [1, 6, 0], [1, 16, 0], [1, 0, 16], [1, 0, 18], [1, 0, 18], [0, 6, 10], [0, 6, 10], [0, 4, 8], [0, 4, 8]], [[1, 6, 0], [1, 6, 0], [1, 7, 0], [1, 7, 0], [1, 17, 0], [1, 17, 0], [1, 16, 0], [1, 16, 0], [0, 4, 8], [0, 4, 8], [0, 6, 10], [0, 6, 10], [1, 7, 0], [1, 7, 0], [1, 6, 0], [1, 6, 0], [1, 16, 0], [1, 16, 0], [1, 0, 18], [1, 0, 18], [0, 6, 10], [0, 6, 10], [0, 4, 8], [0, 4, 8]], [[1, 5, 0], [1, 5, 0], [1, 4, 0], [1, 4, 0], [1, 19, 0], [1, 19, 0], [1, 18, 0], [1, 18, 0], [0, 6, 8], [0, 6, 8], [0, 4, 10], [0, 4, 10], [1, 4, 0], [1, 4, 0], [1, 5, 0], [1, 5, 0], [1, 18, 0], [1, 18, 0], [1, 19, 0], [1, 0, 19], [0, 4, 10], [0, 4, 10], [0, 6, 8], [0, 6, 8]], [[1, 5, 0], [1, 5, 0], [1, 4, 0], [1, 4, 0], [1, 19, 0], [1, 19, 0], [1, 18, 0], [1, 18, 0], [0, 6, 8], [0, 6, 8], [0, 4, 10], [0, 4, 10], [1, 4, 0], [1, 4, 0], [1, 5, 0], [1, 5, 0], [1, 18, 0], [1, 18, 0], [1, 19, 0], [1, 19, 0], [0, 4, 10], [0, 4, 10], [0, 6, 8], [0, 6, 8]], [[0, 10, 0], [0, 10, 0], [0, 10, 2], [0, 10, 3], [0, 10, 4], [0, 10, 5], [0, 10, 6], [0, 10, 6], [0, 10, 8], [0, 10, 8], [0, 10, 10], [0, 10, 10], [0, 10, 2], [0, 10, 2], [0, 10, 0], [0, 10, 0], [0, 10, 6], [0, 10, 6], [0, 10, 4], [0, 10, 4], [0, 10, 10], [0, 10, 10], [0, 10, 8], [0, 10, 8]], [[0, 10, 0], [0, 10, 0], [0, 10, 2], [0, 10, 3], [0, 10, 4], [0, 10, 5], [0, 10, 6], [0, 10, 6], [0, 10, 8], [0, 10, 8], [0, 10, 10], [0, 10, 10], [0, 10, 2], [0, 10, 2], [0, 10, 0], [0, 10, 0], [0, 10, 6], [0, 10, 6], [0, 10, 4], [0, 10, 4], [0, 10, 10], [0, 10, 10], [0, 10, 8], [0, 10, 8]], [[0, 8, 3], [0, 8, 2], [0, 8, 0], [0, 8, 0], [0, 8, 6], [0, 8, 6], [0, 8, 5], [0, 8, 4], [0, 8, 8], [0, 8, 8], [0, 8, 10], [0, 8, 10], [0, 8, 0], [0, 8, 0], [0, 8, 2], [0, 8, 2], [0, 8, 4], [0, 8, 4], [0, 8, 6], [0, 8, 6], [0, 8, 10], [0, 8, 10], [0, 8, 8], [0, 8, 8]], [[0, 8, 3], [0, 8, 2], [0, 8, 0], [0, 8, 0], [0, 8, 6], [0, 8, 6], [0, 8, 5], [0, 8, 4], [0, 8, 8], [0, 8, 8], [0, 8, 10], [0, 8, 10], [0, 8, 0], [0, 8, 0], [0, 8, 2], [0, 8, 2], [0, 8, 4], [0, 8, 4], [0, 8, 6], [0, 8, 6], [0, 8, 10], [0, 8, 10], [0, 8, 8], [0, 8, 8]]], [[[0, 0, 0], [0, 3, 0], [0, 3, 2], [0, 0, 3], [0, 3, 4], [0, 0, 5], [0, 0, 6], [0, 3, 6], [1, 0, 8], [1, 0, 9], [1, 0, 11], [1, 0, 10], [0, 5, 2], [0, 6, 2], [0, 5, 0], [0, 6, 0], [0, 6, 6], [0, 5, 6], [0, 6, 4], [0, 5, 4], [1, 0, 21], [1, 0, 20], [1, 0, 22], [1, 0, 23]], [[0, 0, 3], [0, 2, 2], [0, 2, 0], [0, 0, 0], [0, 2, 6], [0, 0, 6], [0, 0, 5], [0, 2, 4], [1, 0, 10], [1, 0, 11], [1, 0, 9], [1, 0, 8], [0, 6, 0], [0, 4, 0], [0, 6, 2], [0, 4, 2], [0, 4, 4], [0, 6, 4], [0, 4, 6], [0, 6, 6], [1, 0, 23], [1, 0, 22], [1, 0, 20], [1, 0, 21]], [[0, 2, 3], [0, 0, 2], [0, 0, 0], [0, 2, 0], [0, 0, 6], [0, 2, 6], [0, 2, 5], [0, 0, 4], [1, 0, 11], [1, 0, 10], [1, 0, 8], [1, 0, 9], [0, 4, 0], [0, 6, 0], [0, 4, 2], [0, 6, 2], [0, 6, 4], [0, 4, 4], [0, 6, 6], [0, 4, 6], [1, 0, 22], [1, 0, 23], [1, 0, 21], [1, 0, 20]], [[0, 3, 0], [0, 0, 0], [0, 0, 2], [0, 3, 3], [0, 0, 4], [0, 3, 5], [0, 3, 6], [0, 0, 6], [1, 0, 9], [1, 0, 8], [1, 0, 10], [1, 0, 11], [0, 6, 2], [0, 5, 2], [0, 6, 0], [0, 5, 0], [0, 5, 6], [0, 6, 6], [0, 5, 4], [0, 6, 4], [1, 0, 20], [1, 0, 21], [1, 0, 23], [1, 0, 22]], [[0, 4, 3], [0, 6, 2], [0, 6, 0], [0, 4, 0], [0, 6, 6], [0, 4, 6], [0, 4, 5], [0, 6, 4], [1, 0, 21], [1, 0, 20], [1, 0, 23], [1, 0, 22], [0, 0, 0], [0, 2, 0], [0, 0, 2], [0, 2, 2], [0, 2, 4], [0, 0, 4], [0, 2, 6], [0, 0, 6], [1, 0, 8], [1, 0, 9], [1, 0, 10], [1, 0, 11]], [[0, 5, 0], [0, 6, 0], [0, 6, 2], [0, 5, 3], [0, 6, 4], [0, 5, 5], [0, 5, 6], [0, 6, 6], [1, 0, 22], [1, 0, 23], [1, 0, 20], [1, 0, 21], [0, 3, 2], [0, 0, 2], [0, 3, 0], [0, 0, 0], [0, 0, 6], [0, 3, 6], [0, 0, 4], [0, 3, 4], [1, 0, 11], [1, 0, 10], [1, 0, 9], [1, 0, 8]], [[0, 6, 0], [0, 5, 0], [0, 5, 2], [0, 6, 3], [0, 5, 4], [0, 6, 5], [0, 6, 6], [0, 5, 6], [1, 0, 23], [1, 0, 22], [1, 0, 21], [1, 0, 20], [0, 0, 2], [0, 3, 2], [0, 0, 0], [0, 3, 0], [0, 3, 6], [0, 0, 6], [0, 3, 4], [0, 0, 4], [1, 0, 10], [1, 0, 11], [1, 0, 8], [1, 0, 9]], [[0, 6, 3], [0, 4, 2], [0, 4, 0], [0, 6, 0], [0, 4, 6], [0, 6, 6], [0, 6, 5], [0, 4, 4], [1, 0, 20], [1, 0, 21], [1, 0, 22], [1, 0, 23], [0, 2, 0], [0, 0, 0], [0, 2, 2], [0, 0, 2], [0, 0, 4], [0, 2, 4], [0, 0, 6], [0, 2, 6], [1, 0, 9], [1, 0, 8], [1, 0, 11], [1, 0, 10]], [[1, 8, 0], [1, 10, 0], [1, 11, 0], [1, 9, 0], [1, 21, 0], [1, 22, 0], [1, 23, 0], [1, 20, 0], [0, 0, 0], [0, 0, 2], [0, 2, 2], [0, 2, 0], [0, 6, 6], [0, 4, 4], [0, 6, 4], [0, 4, 6], [0, 4, 2], [0, 6, 0], [0, 4, 0], [0, 6, 2], [0, 2, 4], [0, 2, 6], [0, 0, 6], [0, 0, 4]], [[1, 9, 0], [1, 11, 0], [1, 10, 0], [1, 8, 0], [1, 20, 0], [1, 23, 0], [1, 22, 0], [1, 21, 0], [0, 2, 0], [0, 2, 2], [0, 0, 2], [0, 0, 0], [0, 4, 6], [0, 6, 4], [0, 4, 4], [0, 6, 6], [0, 6, 2], [0, 4, 0], [0, 6, 0], [0, 4, 2], [0, 0, 4], [0, 0, 6], [0, 2, 6], [0, 2, 4]], [[1, 11, 0], [1, 9, 0], [1, 8, 0], [1, 10, 0], [1, 23, 0], [1, 20, 0], [1, 21, 0], [1, 22, 0], [0, 2, 2], [0, 2, 0], [0, 0, 0], [0, 0, 2], [0, 6, 4], [0, 4, 6], [0, 6, 6], [0, 4, 4], [0, 4, 0], [0, 6, 2], [0, 4, 2], [0, 6, 0], [0, 0, 6], [0, 0, 4], [0, 2, 4], [0, 2, 6]], [[1, 10, 0], [1, 8, 0], [1, 9, 0], [1, 11, 0], [1, 22, 0], [1, 21, 0], [1, 20, 0], [1, 23, 0], [0, 0, 2], [0, 0, 0], [0, 2, 0], [0, 2, 2], [0, 4, 4], [0, 6, 6], [0, 4, 6], [0, 6, 4], [0, 6, 0], [0, 4, 2], [0, 6, 2], [0, 4, 0], [0, 2, 6], [0, 2, 4], [0, 0, 4], [0, 0, 6]], [[0, 2, 5], [0, 0, 6], [0, 0, 4], [0, 2, 6], [0, 0, 0], [0, 2, 3], [0, 2, 0], [0, 0, 2], [0, 6, 6], [0, 6, 4], [0, 4, 6], [0, 4, 4], [1, 21, 0], [1, 0, 22], [1, 0, 20], [1, 0, 23], [1, 0, 8], [1, 0, 11], [1, 0, 9], [1, 0, 10], [0, 4, 2], [0, 4, 0], [0, 6, 2], [0, 6, 0]], [[0, 2, 6], [0, 0, 4], [0, 0, 6], [0, 2, 5], [0, 0, 2], [0, 2, 0], [0, 2, 3], [0, 0, 0], [0, 4, 4], [0, 4, 6], [0, 6, 4], [0, 6, 6], [1, 22, 0], [1, 20, 0], [1, 0, 22], [1, 0, 21], [1, 0, 10], [1, 0, 9], [1, 0, 11], [1, 0, 8], [0, 6, 0], [0, 6, 2], [0, 4, 0], [0, 4, 2]], [[0, 0, 5], [0, 2, 6], [0, 2, 4], [0, 0, 6], [0, 2, 0], [0, 0, 3], [0, 0, 0], [0, 2, 2], [0, 4, 6], [0, 4, 4], [0, 6, 6], [0, 6, 4], [1, 20, 0], [1, 22, 0], [1, 21, 0], [1, 0, 22], [1, 0, 9], [1, 0, 10], [1, 0, 8], [1, 0, 11], [0, 6, 2], [0, 6, 0], [0, 4, 2], [0, 4, 0]], [[0, 0, 6], [0, 2, 4], [0, 2, 6], [0, 0, 5], [0, 2, 2], [0, 0, 0], [0, 0, 3], [0, 2, 0], [0, 6, 4], [0, 6, 6], [0, 4, 4], [0, 4, 6], [1, 23, 0], [1, 21, 0], [1, 22, 0], [1, 20, 0], [1, 0, 11], [1, 0, 8], [1, 0, 10], [1, 0, 9], [0, 4, 0], [0, 4, 2], [0, 6, 0], [0, 6, 2]], [[0, 6, 6], [0, 4, 4], [0, 4, 6], [0, 6, 5], [0, 4, 2], [0, 6, 0], [0, 6, 3], [0, 4, 0], [0, 2, 4], [0, 2, 6], [0, 0, 4], [0, 0, 6], [1, 8, 0], [1, 10, 0], [1, 9, 0], [1, 11, 0], [1, 21, 0], [1, 0, 23], [1, 0, 20], [1, 0, 22], [0, 0, 0], [0, 0, 2], [0, 2, 0], [0, 2, 2]], [[0, 6, 5], [0, 4, 6], [0, 4, 4], [0, 6, 6], [0, 4, 0], [0, 6, 3], [0, 6, 0], [0, 4, 2], [0, 0, 6], [0, 0, 4], [0, 2, 6], [0, 2, 4], [1, 11, 0], [1, 9, 0], [1, 10, 0], [1, 8, 0], [1, 23, 0], [1, 20, 0], [1, 0, 23], [1, 0, 21], [0, 2, 2], [0, 2, 0], [0, 0, 2], [0, 0, 0]], [[0, 4, 6], [0, 6, 4], [0, 6, 6], [0, 4, 5], [0, 6, 2], [0, 4, 0], [0, 4, 3], [0, 6, 0], [0, 0, 4], [0, 0, 6], [0, 2, 4], [0, 2, 6], [1, 9, 0], [1, 11, 0], [1, 8, 0], [1, 10, 0], [1, 20, 0], [1, 23, 0], [1, 21, 0], [1, 0, 23], [0, 2, 0], [0, 2, 2], [0, 0, 0], [0, 0, 2]], [[0, 4, 5], [0, 6, 6], [0, 6, 4], [0, 4, 6], [0, 6, 0], [0, 4, 3], [0, 4, 0], [0, 6, 2], [0, 2, 6], [0, 2, 4], [0, 0, 6], [0, 0, 4], [1, 10, 0], [1, 8, 0], [1, 11, 0], [1, 9, 0], [1, 22, 0], [1, 21, 0], [1, 23, 0], [1, 20, 0], [0, 0, 2], [0, 0, 0], [0, 2, 2], [0, 2, 0]], [[1, 21, 0], [1, 23, 0], [1, 22, 0], [1, 20, 0], [1, 8, 0], [1, 11, 0], [1, 10, 0], [1, 9, 0], [0, 4, 2], [0, 4, 0], [0, 6, 0], [0, 6, 2], [0, 2, 4], [0, 0, 6], [0, 2, 6], [0, 0, 4], [0, 0, 0], [0, 2, 2], [0, 0, 2], [0, 2, 0], [0, 6, 6], [0, 6, 4], [0, 4, 4], [0, 4, 6]], [[1, 20, 0], [1, 22, 0], [1, 23, 0], [1, 21, 0], [1, 9, 0], [1, 10, 0], [1, 11, 0], [1, 8, 0], [0, 6, 2], [0, 6, 0], [0, 4, 0], [0, 4, 2], [0, 0, 4], [0, 2, 6], [0, 0, 6], [0, 2, 4], [0, 2, 0], [0, 0, 2], [0, 2, 2], [0, 0, 0], [0, 4, 6], [0, 4, 4], [0, 6, 4], [0, 6, 6]], [[1, 22, 0], [1, 20, 0], [1, 21, 0], [1, 23, 0], [1, 10, 0], [1, 9, 0], [1, 8, 0], [1, 11, 0], [0, 6, 0], [0, 6, 2], [0, 4, 2], [0, 4, 0], [0, 2, 6], [0, 0, 4], [0, 2, 4], [0, 0, 6], [0, 0, 2], [0, 2, 0], [0, 0, 0], [0, 2, 2], [0, 4, 4], [0, 4, 6], [0, 6, 6], [0, 6, 4]], [[1, 23, 0], [1, 21, 0], [1, 20, 0], [1, 22, 0], [1, 11, 0], [1, 8, 0], [1, 9, 0], [1, 10, 0], [0, 4, 0], [0, 4, 2], [0, 6, 2], [0, 6, 0], [0, 0, 6], [0, 2, 4], [0, 0, 4], [0, 2, 6], [0, 2, 2], [0, 0, 0], [0, 2, 0], [0, 0, 2], [0, 6, 4], [0, 6, 6], [0, 4, 6], [0, 4, 4]]]], dtype=int)
  8. by_name = {"0": 0, "msqy_h": 11, "2": 2, "3": 3, "4": 4, "5": 5, "6": 6, "1": 1, "msqx_h": 14, "9": 9, "YC": 10, "YB": 6, "YE": 18, "YD": 14, "14": 14, "YF": 22, "XB": 5, "hadamard": 10, "18": 18, "19": 19, "20": 20, "21": 21, "msqz_h": 5, "23": 23, "22": 22, "7": 7, "ZC": 11, "pz": 3, "px": 1, "py": 2, "hadamard_h": 10, "YA": 2, "13": 13, "identity_h": 0, "ZE": 19, "msqz": 6, "msqy": 9, "msqx": 15, "10": 10, "py_h": 2, "sqz": 5, "sqy": 11, "sqx": 14, "IA": 0, "ZD": 15, "XC": 9, "ZF": 23, "XA": 1, "XF": 21, "ZA": 3, "ZB": 7, "pz_h": 3, "11": 11, "XD": 13, "phase": 6, "px_h": 1, "IC": 8, "IB": 4, "IE": 16, "ID": 12, "identity": 0, "IF": 20, "16": 16, "XE": 17, "sqz_h": 6, "17": 17, "15": 15, "12": 12, "sqx_h": 15, "8": 8, "phase_h": 5, "sqy_h": 9}
  9. measurement_table = np.array([[[0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1], [0, 1]], [[1, 1], [1, 1], [1, -1], [1, -1], [2, -1], [2, -1], [2, 1], [2, 1], [3, -1], [3, -1], [3, 1], [3, 1], [1, -1], [1, -1], [1, 1], [1, 1], [2, 1], [2, 1], [2, -1], [2, -1], [3, 1], [3, 1], [3, -1], [3, -1]], [[2, 1], [2, -1], [2, 1], [2, -1], [1, -1], [1, 1], [1, -1], [1, 1], [2, -1], [2, 1], [2, -1], [2, 1], [3, -1], [3, 1], [3, -1], [3, 1], [3, 1], [3, -1], [3, 1], [3, -1], [1, 1], [1, -1], [1, 1], [1, -1]], [[3, 1], [3, -1], [3, -1], [3, 1], [3, -1], [3, 1], [3, 1], [3, -1], [1, -1], [1, 1], [1, 1], [1, -1], [2, -1], [2, 1], [2, 1], [2, -1], [1, 1], [1, -1], [1, -1], [1, 1], [2, 1], [2, -1], [2, -1], [2, 1]]], dtype=int)
  10. unitaries_real = np.array([[[1.0, 0.0], [0.0, 1.0]], [[-0.0, 1.0], [1.0, -0.0]], [[0.0, 1.0], [-1.0, 0.0]], [[1.0, 0.0], [0.0, -1.0]], [[0.0, 1.0], [0.0, 0.0]], [[1.0, 0.0], [0.0, 0.0]], [[1.0, 0.0], [0.0, -0.0]], [[-0.0, 1.0], [-0.0, -0.0]], [[ir2, -ir2], [-ir2, -ir2]], [[ir2, -ir2], [ir2, ir2]], [[ir2, ir2], [ir2, -ir2]], [[ir2, ir2], [-ir2, ir2]], [[ir2, -0.0], [0.0, -ir2]], [[ir2, 0.0], [-0.0, -ir2]], [[ir2, -0.0], [-0.0, ir2]], [[ir2, 0.0], [0.0, ir2]], [[ir2, 0.0], [ir2, -0.0]], [[ir2, -0.0], [-ir2, -0.0]], [[ir2, 0.0], [-ir2, 0.0]], [[ir2, -0.0], [ir2, 0.0]], [[ir2, ir2], [-0.0, 0.0]], [[ir2, ir2], [0.0, -0.0]], [[ir2, -ir2], [0.0, 0.0]], [[ir2, -ir2], [-0.0, -0.0]]], dtype=complex)
  11. unitaries_imag = np.array([[[0.0, -0.0], [-0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, -0.0]], [[0.0, 0.0], [-1.0, 0.0]], [[0.0, 0.0], [0.0, -1.0]], [[0.0, -0.0], [-0.0, 1.0]], [[0.0, 0.0], [1.0, 0.0]], [[0.0, -0.0], [-0.0, -0.0]], [[0.0, -0.0], [0.0, 0.0]], [[0.0, 0.0], [0.0, -0.0]], [[0.0, 0.0], [-0.0, 0.0]], [[0.0, ir2], [-ir2, -0.0]], [[0.0, -ir2], [ir2, -0.0]], [[0.0, ir2], [ir2, 0.0]], [[0.0, -ir2], [-ir2, 0.0]], [[0.0, -ir2], [0.0, ir2]], [[0.0, ir2], [-0.0, ir2]], [[0.0, -ir2], [-0.0, -ir2]], [[0.0, ir2], [0.0, -ir2]], [[0.0, 0.0], [ir2, -ir2]], [[0.0, 0.0], [-ir2, ir2]], [[0.0, -0.0], [-ir2, -ir2]], [[0.0, -0.0], [ir2, ir2]]], dtype=complex)
  12. # Reconstruct
  13. unitaries = unitaries_real + 1j*unitaries_imag