Anders and Briegel in Python
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

323 lines
11KB

  1. """
  2. Provides an extremely basic graph structure, based on key/value pairs
  3. """
  4. import itertools as it
  5. import json
  6. import qi, clifford, util
  7. import random
  8. class GraphState(object):
  9. def __init__(self, nodes=[]):
  10. self.adj, self.node = {}, {}
  11. self.add_nodes(nodes)
  12. def add_node(self, v, **kwargs):
  13. """ Add a node """
  14. assert not v in self.node
  15. self.adj[v] = {}
  16. self.node[v] = {"vop": clifford.by_name["hadamard"]}
  17. self.node[v].update(kwargs)
  18. def add_nodes(self, nodes):
  19. """ Add a buncha nodes """
  20. for n in nodes:
  21. self.add_node(n)
  22. def add_edge(self, v1, v2, data={}):
  23. """ Add an edge between two vertices in the self """
  24. assert v1 != v2
  25. self.adj[v1][v2] = data
  26. self.adj[v2][v1] = data
  27. def add_edges(self, edges):
  28. """ Add a buncha edges """
  29. for (v1, v2) in edges:
  30. self.add_edge(v1, v2)
  31. def del_edge(self, v1, v2):
  32. """ Delete an edge between two vertices in the self """
  33. del self.adj[v1][v2]
  34. del self.adj[v2][v1]
  35. def has_edge(self, v1, v2):
  36. """ Test existence of an edge between two vertices in the self """
  37. return v2 in self.adj[v1]
  38. def toggle_edge(self, v1, v2):
  39. """ Toggle an edge between two vertices in the self """
  40. if self.has_edge(v1, v2):
  41. self.del_edge(v1, v2)
  42. else:
  43. self.add_edge(v1, v2)
  44. def edgelist(self):
  45. """ Describe a graph as an edgelist """
  46. # TODO: inefficient
  47. edges = set(tuple(sorted((i, n)))
  48. for i, v in self.adj.items()
  49. for n in v)
  50. return tuple(edges)
  51. def remove_vop(self, a, avoid):
  52. """ Reduces VOP[a] to the identity """
  53. others = set(self.adj[a]) - {avoid}
  54. #TODO: this is a hack for determinsim. remove
  55. swap_qubit = min(others) if others else avoid
  56. #swap_qubit = others.pop() if others else avoid # TODO: maybe this is the only problematic part
  57. #print "SWAPPING WITH {} (options were {})".format(swap_qubit, tuple(others))
  58. for v in reversed(clifford.decompositions[self.node[a]["vop"]]):
  59. if v == "x":
  60. self.local_complementation(a, "U ->")
  61. else:
  62. self.local_complementation(swap_qubit, "V ->")
  63. def local_complementation(self, v, prefix=""):
  64. """ As defined in LISTING 1 of Anders & Briegel """
  65. for i, j in it.combinations(self.adj[v], 2):
  66. self.toggle_edge(i, j)
  67. self.node[v]["vop"] = clifford.times_table[
  68. self.node[v]["vop"], clifford.by_name["msqx_h"]]
  69. for i in self.adj[v]:
  70. self.node[i]["vop"] = clifford.times_table[
  71. self.node[i]["vop"], clifford.by_name["sqz_h"]]
  72. def act_local_rotation(self, v, op):
  73. """ Act a local rotation """
  74. rotation = clifford.by_name[str(op)]
  75. self.node[v]["vop"] = clifford.times_table[
  76. rotation, self.node[v]["vop"]]
  77. def act_local_rotation2(self, v, op):
  78. """ Act a local rotation """
  79. rotation = clifford.by_name[str(op)]
  80. self.node[v]["vop"] = clifford.times_table[
  81. self.node[v]["vop"], rotation]
  82. def act_hadamard(self, qubit):
  83. """ Shorthand """
  84. self.act_local_rotation(qubit, 10)
  85. def lonely(self, a, b):
  86. """ Is this qubit lonely ? """
  87. return len(self.adj[a]) > (b in self.adj[a])
  88. def act_cz(self, a, b):
  89. """ Act a controlled-phase gate on two qubits """
  90. if self.lonely(a, b):
  91. self.remove_vop(a, b)
  92. if self.lonely(b, a):
  93. self.remove_vop(b, a)
  94. if self.lonely(a, b) and not clifford.is_diagonal(self.node[a]["vop"]):
  95. self.remove_vop(a, b)
  96. edge = self.has_edge(a, b)
  97. va = self.node[a]["vop"]
  98. vb = self.node[b]["vop"]
  99. new_edge, self.node[a]["vop"], self.node[b]["vop"] = \
  100. clifford.cz_table[int(edge), va, vb]
  101. if new_edge != edge:
  102. self.toggle_edge(a, b)
  103. def measure(self, node, basis, force=None):
  104. """ Measure in an arbitrary basis """
  105. basis = clifford.by_name[basis]
  106. ha = clifford.conjugation_table[self.node[node]["vop"]]
  107. #basis, phase = clifford.conjugate(basis, ha)
  108. basis, phase = clifford.conjugate(basis, self.node[node]["vop"])
  109. print "MEASURE"
  110. print "Op: {} Phase: {}".format(basis, phase)
  111. # Flip a coin
  112. result = force if force!=None else random.choice([0, 1])
  113. # Flip the result if we have negative phase
  114. if phase == -1:
  115. result = not result
  116. if basis == clifford.by_name["px"]:
  117. result = self.measure_x(node, result)
  118. elif basis == clifford.by_name["py"]:
  119. result = self.measure_y(node, result)
  120. elif basis == clifford.by_name["pz"]:
  121. result = self.measure_z(node, result)
  122. else:
  123. raise ValueError("You can only measure in {X,Y,Z}")
  124. # Flip the result if we have negative phase
  125. if phase == -1:
  126. result = not result
  127. return result
  128. def toggle_edges(self, a, b):
  129. """ Toggle edges between vertex sets a and b """
  130. # TODO: i'm pretty sure this is just a single-line it.combinations or equiv
  131. done = set()
  132. for i, j in it.product(a, b):
  133. if i != j and not (i, j) in done:
  134. done.add((i, j))
  135. done.add((j, i))
  136. self.toggle_edge(i, j)
  137. def measure_x(self, node, result):
  138. """ Measure the graph in the X-basis """
  139. if len(self.adj[node]) == 0:
  140. print "gXm{},D".format(node),
  141. return 0
  142. print "gXm{},{:d}".format(node, result),
  143. # Pick a vertex
  144. #friend = next(self.adj[node].iterkeys())
  145. # TODO this is enforced determinism for testing purposes
  146. friend = sorted(self.adj[node].keys())[0]
  147. # Update the VOPs. TODO: pretty ugly
  148. if result:
  149. # Do a z on all ngb(vb) \ ngb(v) \ {v}, and some other stuff
  150. self.act_local_rotation(node, "pz")
  151. self.act_local_rotation(friend, "msqy")
  152. for n in set(self.adj[friend]) - set(self.adj[node]) - {node}:
  153. self.act_local_rotation(n, "pz")
  154. else:
  155. # Do a z on all ngb(v) \ ngb(vb) \ {vb}, and sqy on the friend
  156. self.act_local_rotation(friend, "sqy")
  157. for n in set(self.adj[node]) - set(self.adj[friend]) - {friend}:
  158. self.act_local_rotation(n, "pz")
  159. # Toggle the edges. TODO: Yuk. Just awful!
  160. a = set(self.adj[node].keys())
  161. b = set(self.adj[friend].keys())
  162. self.toggle_edges(a, b)
  163. intersection = a & b
  164. for i, j in it.combinations(intersection, 2):
  165. self.toggle_edge(i, j)
  166. for n in a - {friend}:
  167. self.toggle_edge(friend, n)
  168. return result
  169. def measure_y(self, node, result):
  170. """ Measure the graph in the Y-basis """
  171. print "gYm{},{:d}".format(node, result),
  172. # Do some rotations
  173. for neighbour in self.adj[node]:
  174. # NB: should these be hermitian_conjugated?
  175. self.act_local_rotation(neighbour, "sqz" if result else "msqz")
  176. # A sort of local complementation
  177. vngbh = set(self.adj[node]) | {node}
  178. for i, j in it.combinations(vngbh, 2):
  179. self.toggle_edge(i, j)
  180. # lcoS.herm_adjoint() if result else lcoS
  181. # else smiZ
  182. # 5 else 6
  183. print "RESULT is {:d}, op is {} doing {}".format(result, self.node[node]["vop"], 5 if result else 6)
  184. self.act_local_rotation2(node, 5 if result else 6)
  185. print "BECAME ", self.node[node]["vop"]
  186. return result
  187. def measure_z(self, node, result):
  188. """ Measure the graph in the Z-basis """
  189. print "gZm{},{:d}".format(node, result),
  190. # Disconnect
  191. for neighbour in tuple(self.adj[node]):
  192. self.del_edge(node, neighbour)
  193. if result:
  194. self.act_local_rotation(neighbour, "pz")
  195. # Rotate
  196. self.act_local_rotation(node, "hadamard")
  197. if result:
  198. self.act_local_rotation(node, "px")
  199. return result
  200. def order(self):
  201. """ Get the number of qubits """
  202. return len(self.node)
  203. def __str__(self):
  204. """ Represent as a string for quick debugging """
  205. s = ""
  206. for key in sorted(self.node.keys()):
  207. s += "{}: {}\t".format(key, clifford.get_name(self.node[key]["vop"]).replace("YC", "-"))
  208. if self.adj[key]:
  209. s += str(tuple(self.adj[key].keys())).replace(" ", "")
  210. else:
  211. s += "-"
  212. s += "\n"
  213. return s
  214. def to_json(self, stringify=False):
  215. """
  216. Convert the graph to JSON form.
  217. JSON keys must be strings, But sometimes it is useful to have
  218. a JSON-like object whose keys are tuples!
  219. """
  220. if stringify:
  221. node = {str(key): value for key, value in self.node.items()}
  222. adj = {str(key): {str(key): value for key, value in ngbh.items()}
  223. for key, ngbh in self.adj.items()}
  224. return {"node": node, "adj": adj}
  225. else:
  226. return {"node": self.node, "adj": self.adj}
  227. def from_json(self, data):
  228. """ Reconstruct from JSON """
  229. self.__init__([])
  230. # TODO
  231. def to_state_vector(self):
  232. """ Get the full state vector """
  233. if len(self.node) > 15:
  234. raise ValueError("Cannot build state vector: too many qubits")
  235. state = qi.CircuitModel(len(self.node))
  236. for i in range(len(self.node)):
  237. state.act_hadamard(i)
  238. for i, j in self.edgelist():
  239. state.act_cz(i, j)
  240. for i, n in self.node.items():
  241. state.act_local_rotation(i, clifford.unitaries[n["vop"]])
  242. return state
  243. def to_stabilizer(self):
  244. """ Get the stabilizer of this graph """
  245. return
  246. output = {a: {} for a in self.node}
  247. for a, b in it.product(self.node, self.node):
  248. if a == b:
  249. output[a][b] = "X"
  250. elif a in self.adj[b]:
  251. output[a][b] = "Z"
  252. else:
  253. output[a][b] = "I"
  254. # TODO: signs
  255. return output
  256. def __eq__(self, other):
  257. """ Check equality between graphs """
  258. if str(type(other)) == "<class 'anders_briegel.graphsim.GraphRegister'>":
  259. return self.to_json() == other.to_json()
  260. return self.adj == other.adj and self.node == other.node
  261. if __name__ == '__main__':
  262. g = GraphState()
  263. g.add_nodes(range(10))
  264. g.add_edge(0, 5)
  265. g.act_local_rotation(6, 10)
  266. print g
  267. print g.to_state_vector()