Anders and Briegel in Python
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

276 lignes
8.9KB

  1. """
  2. Provides an extremely basic graph structure, based on key/value pairs
  3. """
  4. import itertools as it
  5. import json
  6. import qi, clifford, util
  7. import random
  8. class GraphState(object):
  9. def __init__(self, nodes=[]):
  10. self.adj, self.node = {}, {}
  11. self.add_nodes(nodes)
  12. def add_node(self, v, **kwargs):
  13. """ Add a node """
  14. assert not v in self.node
  15. self.adj[v] = {}
  16. self.node[v] = {"vop": clifford.by_name["hadamard"]}
  17. self.node[v].update(kwargs)
  18. def add_nodes(self, nodes):
  19. """ Add a buncha nodes """
  20. for n in nodes:
  21. self.add_node(n)
  22. def add_edge(self, v1, v2, data={}):
  23. """ Add an edge between two vertices in the self """
  24. assert v1 != v2
  25. self.adj[v1][v2] = data
  26. self.adj[v2][v1] = data
  27. def add_edges(self, edges):
  28. """ Add a buncha edges """
  29. for (v1, v2) in edges:
  30. self.add_edge(v1, v2)
  31. def del_edge(self, v1, v2):
  32. """ Delete an edge between two vertices in the self """
  33. del self.adj[v1][v2]
  34. del self.adj[v2][v1]
  35. def has_edge(self, v1, v2):
  36. """ Test existence of an edge between two vertices in the self """
  37. return v2 in self.adj[v1]
  38. def toggle_edge(self, v1, v2):
  39. """ Toggle an edge between two vertices in the self """
  40. if self.has_edge(v1, v2):
  41. self.del_edge(v1, v2)
  42. else:
  43. self.add_edge(v1, v2)
  44. def edgelist(self):
  45. """ Describe a graph as an edgelist """
  46. # TODO: inefficient
  47. edges = set(tuple(sorted((i, n)))
  48. for i, v in self.adj.items()
  49. for n in v)
  50. return tuple(edges)
  51. def remove_vop(self, a, avoid):
  52. """ Reduces VOP[a] to the identity """
  53. others = set(self.adj[a]) - {avoid}
  54. swap_qubit = others.pop() if others else avoid
  55. for v in reversed(clifford.decompositions[self.node[a]["vop"]]):
  56. if v == "x":
  57. self.local_complementation(a, "U ->")
  58. else:
  59. self.local_complementation(swap_qubit, "V ->")
  60. def local_complementation(self, v, prefix=""):
  61. """ As defined in LISTING 1 of Anders & Briegel """
  62. for i, j in it.combinations(self.adj[v], 2):
  63. self.toggle_edge(i, j)
  64. self.node[v]["vop"] = clifford.times_table[
  65. self.node[v]["vop"], clifford.by_name["msqx_h"]]
  66. for i in self.adj[v]:
  67. self.node[i]["vop"] = clifford.times_table[
  68. self.node[i]["vop"], clifford.by_name["sqz_h"]]
  69. def act_local_rotation(self, v, op):
  70. """ Act a local rotation """
  71. rotation = clifford.by_name[str(op)]
  72. self.node[v]["vop"] = clifford.times_table[
  73. rotation, self.node[v]["vop"]]
  74. def act_hadamard(self, qubit):
  75. """ Shorthand """
  76. self.act_local_rotation(qubit, 10)
  77. def lonely(self, a, b):
  78. """ Is this qubit lonely ? """
  79. return len(self.adj[a]) > (b in self.adj[a])
  80. def act_cz(self, a, b):
  81. """ Act a controlled-phase gate on two qubits """
  82. if self.lonely(a, b):
  83. self.remove_vop(a, b)
  84. if self.lonely(b, a):
  85. self.remove_vop(b, a)
  86. if self.lonely(a, b) and not clifford.is_diagonal(self.node[a]["vop"]):
  87. self.remove_vop(a, b)
  88. edge = self.has_edge(a, b)
  89. va = self.node[a]["vop"]
  90. vb = self.node[b]["vop"]
  91. new_edge, self.node[a]["vop"], self.node[b]["vop"] = \
  92. clifford.cz_table[edge, va, vb]
  93. if new_edge != edge:
  94. self.toggle_edge(a, b)
  95. def measure(self, node, basis, force=None):
  96. """ Measure in an arbitrary basis """
  97. basis = clifford.by_name[basis]
  98. ha = clifford.conjugation_table[self.node[node]["vop"]]
  99. basis, phase = clifford.conjugate(basis, ha)
  100. #TODO: wtf
  101. #force = force ^ 0x01 if force != -1 and phase == 0 else force
  102. if force != None and phase == 0+0j:
  103. force = not force
  104. result = random.choice([0, 1])
  105. if which == clifford.by_name["px"]:
  106. result = self.measure_x(node, result)
  107. elif which == clifford.by_name["py"]:
  108. result = self.measure_y(node, result)
  109. elif which == clifford.by_name["pz"]:
  110. result = self.measure_z(node, result)
  111. else:
  112. raise ValueError("You can only measure in PX, PY or PZ")
  113. if phase == 1:
  114. result = not result
  115. return res
  116. def toggle_edges(a, b):
  117. """ Toggle edges between vertex sets a and b """
  118. done = {}
  119. for i, j in it.product(a, b):
  120. if i == j and not (i, j) in done:
  121. done.add((i, j), (j, i))
  122. self.toggle_edge(i, j)
  123. def measure_x(self, node, result):
  124. """ Measure the graph in the X-basis """
  125. if len(self.adj[node]) == 0:
  126. return 0
  127. # Pick a vertex
  128. friend = next(self.adj[node].iterkeys())
  129. # TODO: yuk yuk yuk
  130. if result:
  131. # Do a z on all ngb(vb) \ ngb(v) \ {v}, and some other stuff
  132. self.act_local_rotation(node, "pz")
  133. self.act_local_rotation(friend, "msqy")
  134. for n in set(self.adj[friend]) - set(self.adj(node)) - {node}:
  135. self.act_local_rotation(n, "pz")
  136. else:
  137. # Do a z on all ngb(v) \ ngb(vb) \ {vb}, and sqy on the friend
  138. self.act_local_rotation(friend, "sqy")
  139. for n in set(self.adj[node]) - set(self.adj(friend)) - {friend}:
  140. self.act_local_rotation(n, "pz")
  141. # TODO: Yuk. Just awful!
  142. a = set(self.adj[node].keys())
  143. b = set(self.adj[friend].keys())
  144. self.toggle_edges(a, b)
  145. intersection = a & b
  146. for i, j in it.combinations(intersection, 2):
  147. self.toggle_edge(i, j)
  148. for n in a - {friend}:
  149. self.toggle_edge(friend, n)
  150. return result
  151. def measure_y(self, node, result):
  152. """ Measure the graph in the Y-basis """
  153. # Do some rotations
  154. for neighbour in self.adj[node]:
  155. # NB: should these be hermitian_conjugated?
  156. self.act_local_rotation(neighbour, "sqz" if result else "msqz")
  157. # A sort of local complementation
  158. vngbh = set(self.adj[node]) | {node}
  159. for i, j in it.combinations(vngbh, 2):
  160. self.toggle_edge(i, j)
  161. self.act_local_rotation(node, "msqz" if result else "msqz_h")
  162. return result
  163. def measure_z(self, node, result):
  164. """ Measure the graph in the Z-basis """
  165. # Disconnect
  166. for neighbour in self.adj[node]:
  167. self.del_edge(node, neighbour)
  168. if result:
  169. self.act_local_rotation(neighbour, "pz")
  170. # Rotate
  171. if result:
  172. self.act_local_rotation(node, "px")
  173. self.act_local_rotation(node, "hadamard")
  174. return result
  175. def order(self):
  176. """ Get the number of qubits """
  177. return len(self.node)
  178. def __str__(self):
  179. """ Represent as a string for quick debugging """
  180. node = {key: clifford.get_name(value["vop"])
  181. for key, value in self.node.items()}
  182. nbstr = str(self.adj)
  183. return "graph:\n node: {}\n adj: {}\n".format(node, nbstr)
  184. def to_json(self, stringify=False):
  185. """
  186. Convert the graph to JSON form.
  187. JSON keys must be strings, But sometimes it is useful to have
  188. a JSON-like object whose keys are tuples!
  189. """
  190. if stringify:
  191. node = {str(key): value for key, value in self.node.items()}
  192. adj = {str(key): {str(key): value for key, value in ngbh.items()}
  193. for key, ngbh in self.adj.items()}
  194. return {"node": node, "adj": adj}
  195. else:
  196. return {"node": self.node, "adj": self.adj}
  197. def from_json(self, data):
  198. """ Reconstruct from JSON """
  199. self.__init__([])
  200. # TODO
  201. def to_state_vector(self):
  202. """ Get the full state vector """
  203. if len(self.node) > 15:
  204. raise ValueError("Cannot build state vector: too many qubits")
  205. state = qi.CircuitModel(len(self.node))
  206. for i in range(len(self.node)):
  207. state.act_hadamard(i)
  208. for i, j in self.edgelist():
  209. state.act_cz(i, j)
  210. for i, n in self.node.items():
  211. state.act_local_rotation(i, clifford.unitaries[n["vop"]])
  212. return state
  213. def to_stabilizer(self):
  214. """ Get the stabilizer of this graph """
  215. output = {a: {} for a in self.node}
  216. for a, b in it.product(self.node, self.node):
  217. if a == b:
  218. output[a][b] = "X"
  219. elif a in self.adj[b]:
  220. output[a][b] = "Z"
  221. else:
  222. output[a][b] = "I"
  223. # TODO: signs
  224. return output
  225. def __eq__(self, other):
  226. """ Check equality between graphs """
  227. return self.adj == other.adj and self.node == other.node