|
- #!/usr/bin/python
- # -*- coding: utf-8 -*-
-
- """
- Exposes a few basic QI operators
- And a circuit-model simulator
- """
-
- import numpy as np
- import itertools as it
- from fractions import Fraction
-
- def hermitian_conjugate(u):
- """ Shortcut to the Hermitian conjugate """
- return np.conjugate(np.transpose(u))
-
- # Constants
- ir2 = 1 / np.sqrt(2)
- # Operators
- id = np.array(np.eye(2, dtype=complex))
- px = np.array([[0, 1], [1, 0]], dtype=complex)
- py = np.array([[0, -1j], [1j, 0]], dtype=complex)
- pz = np.array([[1, 0], [0, -1]], dtype=complex)
- ha = hadamard = np.array([[1, 1], [1, -1]], dtype=complex) * ir2
- ph = np.array([[1, 0], [0, 1j]], dtype=complex)
- t = np.array([[1, 0], [0, np.exp(1j * np.pi / 4)]], dtype=complex)
-
- sqx = np.array(
- [[1. + 0.j, -0. + 1.j], [-0. + 1.j, 1. - 0.j]], dtype=complex) * ir2
- msqx = np.array(
- [[1. + 0.j, 0. - 1.j], [0. - 1.j, 1. - 0.j]], dtype=complex) * ir2
- sqy = np.array(
- [[1. + 0.j, 1. + 0.j], [-1. - 0.j, 1. - 0.j]], dtype=complex) * ir2
- msqy = np.array(
- [[1. + 0.j, -1. - 0.j], [1. + 0.j, 1. - 0.j]], dtype=complex) * ir2
- sqz = np.array(
- [[1. + 1.j, 0. + 0.j], [0. + 0.j, 1. - 1.j]], dtype=complex) * ir2
- msqz = np.array(
- [[1. - 1.j, 0. + 0.j], [0. + 0.j, 1. + 1.j]], dtype=complex) * ir2
-
- # CZ gate
- cz = np.array(np.eye(4), dtype=complex)
- cz[3, 3] = -1
-
- # States
- zero = np.array([[1], [0]], dtype=complex)
- one = np.array([[0], [1]], dtype=complex)
- plus = np.array([[1], [1]], dtype=complex) / np.sqrt(2)
- bond = cz.dot(np.kron(plus, plus))
- nobond = np.kron(plus, plus)
-
- # Labelling stuff
- common_us = id, px, py, pz, ha, ph, sqz, msqz, sqy, msqy, sqx, msqx
- names = "identity", "px", "py", "pz", "hadamard", "phase", "sqz", "msqz", "sqy", "msqy", "sqx", "msqx"
- by_name = dict(zip(names, common_us))
-
- paulis = px, py, pz
- operators = id, px, py, pz
-
-
- def normalize_global_phase(m):
- """ Normalize the global phase of a matrix """
- v = (x for x in m.flatten() if np.abs(x) > 0.001).next()
- phase = np.arctan2(v.imag, v.real) % np.pi
- rot = np.exp(-1j * phase)
- return rot * m if rot * v > 0 else -rot * m
-
-
- class CircuitModel(object):
-
- def __init__(self, nqubits):
- self.nqubits = nqubits
- self.d = 2 ** nqubits
- self.state = np.zeros((self.d, 1), dtype=complex)
- self.state[0, 0] = 1
-
- def act_cz(self, control, target):
- """ Act a CU somewhere. """
- control = 1 << control
- target = 1 << target
- for i in xrange(self.d):
- if (i & control) and (i & target):
- self.state[i, 0] *= -1
-
- def act_cnot(self, control, target):
- """ Act a CNOT. """
- self.act_hadamard(target)
- self.act_cz(control, target)
- self.act_hadamard(target)
-
- def act_hadamard(self, qubit):
- """ Act a hadamard somewhere. """
- where = 1 << qubit
- output = np.zeros((self.d, 1), dtype=complex)
- for i, v in enumerate(self.state):
- q = int(i & where > 0)
- output[i] += v * ha[q, q]
- output[i ^ where] += v * ha[int(not q), q]
- self.state = output
-
- def act_local_rotation(self, qubit, u):
- """ Act a local unitary somwhere. """
- where = 1 << qubit
- output = np.zeros((self.d, 1), dtype=complex)
- for i, v in enumerate(self.state):
- q = int(i & where > 0)
- output[i] += v * u[q, q]
- output[i ^ where] += v * u[int(not q), q]
- self.state = output
-
- def act_circuit(self, circuit):
- """ Act a sequence of gates. """
- for node, operation in circuit:
- if operation == "cz":
- self.act_cz(*node)
- else:
- self.act_local_rotation(node, operation)
-
- def __eq__(self, other):
- """ Check whether two quantum states are the same or not,
- up to a global phase. """
- a = normalize_global_phase(self.state)
- b = normalize_global_phase(other.state)
- return np.allclose(a, b)
-
- def __setitem__(self, key, value):
- """ Set a matrix element """
- self.state[key] = value
-
- def __getitem__(self, key):
- """ Get a matrix element """
- return self.state[key]
-
- def __str__(self):
- s = ""
- for i in range(self.d):
- label = bin(i)[2:].rjust(self.nqubits, "0")[::-1]
- if abs(self.state[i, 0]) > 0.00001:
- term = self.state[i, 0]
- real_sign = " " if term.real>=0 else "-"
- real_frac = Fraction(str(term.real**2)).limit_denominator()
- imag_sign = "+" if term.imag>=0 else "-"
- imag_frac = Fraction(str(term.imag**2)).limit_denominator()
- s += "|{}❭: \t{}√{}\t{} i √{}\n".format(
- label, real_sign, real_frac, imag_sign, imag_frac)
- return s
|