|
- #!/usr/bin/python
- # -*- coding: utf-8 -*-
-
- """
- Generates and enumerates the 24 elements of the local Clifford group
- Following the prescription of Anders (thesis pg. 26):
- > Table 2.1: The 24 elements of the local Clifford group. The row index (here called the “sign symbol”) shows how the operator
- > U permutes the Pauli operators σ = X, Y, Z under the conjugation σ = ±UσU† . The column index (the “permutation
- > symbol”) indicates the sign obtained under the conjugation: For operators U in the I column it is the sign of the permutation
- > (indicated on the left). For elements in the X, Y and Z columns, it is this sign only if the conjugated Pauli operator is the one
- > indicated by the column header and the opposite sign otherwise.
- """
-
- from numpy import *
-
- # Some two-qubit matrices
- i = matrix(eye(2, dtype=complex))
- px = matrix([[0, 1], [1, 0]], dtype=complex)
- py = matrix([[0, -1j], [1j, 0]], dtype=complex)
- pz = matrix([[1, 0], [0, -1]], dtype=complex)
- h = matrix([[1, 1], [1, -1]], dtype=complex) / sqrt(2)
- p = matrix([[1, 0], [0, 1j]], dtype=complex)
- paulis = (px, py, pz)
-
- # More two-qubit matrices
- s_rotations = [i, p, p*p, p*p*p]
- s_names = ["i", "p", "pp", "ppp"]
- c_rotations = [i, h, h*p, h*p*p, h*p*p*p, h*p*p*h]
- c_names = ["i", "h", "hp", "hpp", "hppp", "hpph"]
-
- def identify_pauli(m):
- """ Given a signed Pauli matrix, name it. """
- for sign in [+1, -1]:
- for label, pauli in zip("xyz", paulis):
- if allclose(sign*pauli, m):
- return "{}{}".format("+" if sign>0 else "-", label)
-
- def get_action(u):
- """ Get the action of a Pauli matrix on three qubits """
- return tuple(identify_pauli(u*p*u.H) for p in paulis)
-
-
-
-
- if __name__ == '__main__':
- permutations = ["xyz", "yxz", "zyx", "xzy", "yzx", "zxy"]
-
-
- #for s, sn in zip(s_rotations, s_names):
- #for c, cn in zip(c_rotations, c_names):
- #print sn, "\t", cn, "\t", get_action(s*c)
-
|