Anders and Briegel in Python
Nie możesz wybrać więcej, niż 25 tematów Tematy muszą się zaczynać od litery lub cyfry, mogą zawierać myślniki ('-') i mogą mieć do 35 znaków.

207 wiersze
6.4KB

  1. """
  2. Provides an extremely basic graph structure, based on neighbour lists
  3. """
  4. import itertools as it
  5. import json
  6. import qi, clifford, util
  7. import random
  8. class GraphState(object):
  9. def __init__(self, nodes=[]):
  10. self.adj, self.node = {}, {}
  11. self.add_nodes(nodes)
  12. def add_node(self, v, **kwargs):
  13. """ Add a node """
  14. assert not v in self.node
  15. self.adj[v] = {}
  16. self.node[v] = {"vop": clifford.by_name["hadamard"]}
  17. self.node[v].update(kwargs)
  18. def add_nodes(self, nodes):
  19. """ Add a buncha nodes """
  20. for n in nodes:
  21. self.add_node(n)
  22. def add_edge(self, v1, v2, data={}):
  23. """ Add an edge between two vertices in the self """
  24. assert v1 != v2
  25. self.adj[v1][v2] = data
  26. self.adj[v2][v1] = data
  27. def add_edges(self, edges):
  28. """ Add a buncha edges """
  29. for (v1, v2) in edges:
  30. self.add_edge(v1, v2)
  31. def del_edge(self, v1, v2):
  32. """ Delete an edge between two vertices in the self """
  33. del self.adj[v1][v2]
  34. del self.adj[v2][v1]
  35. def has_edge(self, v1, v2):
  36. """ Test existence of an edge between two vertices in the self """
  37. return v2 in self.adj[v1]
  38. def toggle_edge(self, v1, v2):
  39. """ Toggle an edge between two vertices in the self """
  40. if self.has_edge(v1, v2):
  41. self.del_edge(v1, v2)
  42. else:
  43. self.add_edge(v1, v2)
  44. def edgelist(self):
  45. """ Describe a graph as an edgelist """
  46. # TODO: inefficient
  47. edges = set(tuple(sorted((i, n)))
  48. for i, v in self.adj.items()
  49. for n in v)
  50. return tuple(edges)
  51. def remove_vop(self, a, avoid):
  52. """ Reduces VOP[a] to the identity """
  53. others = set(self.adj[a]) - {avoid}
  54. swap_qubit = others.pop() if others else avoid
  55. for v in reversed(clifford.decompositions[self.node[a]["vop"]]):
  56. if v == "x":
  57. self.local_complementation(a, "U ->")
  58. else:
  59. self.local_complementation(swap_qubit, "V ->")
  60. def local_complementation(self, v, prefix=""):
  61. """ As defined in LISTING 1 of Anders & Briegel """
  62. for i, j in it.combinations(self.adj[v], 2):
  63. self.toggle_edge(i, j)
  64. msqx_h = clifford.conjugation_table[clifford.by_name["msqx"]]
  65. sqz_h = clifford.conjugation_table[clifford.by_name["sqz"]]
  66. self.node[v]["vop"] = clifford.times_table[self.node[v]["vop"], msqx_h]
  67. for i in self.adj[v]:
  68. self.node[i]["vop"] = clifford.times_table[
  69. self.node[i]["vop"], sqz_h]
  70. def act_local_rotation(self, v, op):
  71. """ Act a local rotation """
  72. rotation = clifford.by_name[str(op)]
  73. self.node[v]["vop"] = clifford.times_table[
  74. rotation, self.node[v]["vop"]]
  75. def act_hadamard(self, qubit):
  76. """ Shorthand """
  77. self.act_local_rotation(qubit, 10)
  78. def lonely(self, a, b):
  79. """ Is this qubit lonely ? """
  80. return len(self.adj[a]) > (b in self.adj[a])
  81. def act_cz(self, a, b):
  82. """ Act a controlled-phase gate on two qubits """
  83. if self.lonely(a, b):
  84. self.remove_vop(a, b)
  85. if self.lonely(b, a):
  86. self.remove_vop(b, a)
  87. if self.lonely(a, b) and not clifford.is_diagonal(self.node[a]["vop"]):
  88. self.remove_vop(a, b)
  89. edge = self.has_edge(a, b)
  90. va = self.node[a]["vop"]
  91. vb = self.node[b]["vop"]
  92. new_edge, self.node[a]["vop"], self.node[b]["vop"] = \
  93. clifford.cz_table[edge, va, vb]
  94. if new_edge != edge:
  95. self.toggle_edge(a, b)
  96. def measure_z(self, node, force=None):
  97. """ Measure the graph in the Z-basis """
  98. res = force if force != None else random.choice([0, 1])
  99. # Disconnect
  100. for neighbour in self.adj[node]:
  101. self.del_edge(node, neighbour)
  102. if res:
  103. self.act_local_rotation(neighbour, "pz")
  104. # Rotate
  105. if res:
  106. self.act_local_rotation(node, "px")
  107. self.act_local_rotation(node, "hadamard")
  108. else:
  109. self.act_local_rotation(node, "hadamard")
  110. return res
  111. def measure_x(self, i):
  112. """ Measure the graph in the X-basis """
  113. # TODO
  114. pass
  115. def measure_y(self, i):
  116. """ Measure the graph in the Y-basis """
  117. # TODO
  118. pass
  119. def order(self):
  120. """ Get the number of qubits """
  121. return len(self.node)
  122. def __str__(self):
  123. """ Represent as a string for quick debugging """
  124. node = {key: clifford.get_name(value["vop"])
  125. for key, value in self.node.items()}
  126. nbstr = str(self.adj)
  127. return "graph:\n node: {}\n adj: {}\n".format(node, nbstr)
  128. def to_json(self):
  129. """ Convert the graph to JSON form """
  130. return {"node": self.node, "adj": self.adj}
  131. def from_json(self, data):
  132. """ Reconstruct from JSON """
  133. self.__init__([])
  134. # TODO
  135. def to_state_vector(self):
  136. """ Get the full state vector """
  137. if len(self.node) > 15:
  138. raise ValueError("Cannot build state vector: too many qubits")
  139. state = qi.CircuitModel(len(self.node))
  140. for i in range(len(self.node)):
  141. state.act_hadamard(i)
  142. for i, j in self.edgelist():
  143. state.act_cz(i, j)
  144. for i, n in self.node.items():
  145. state.act_local_rotation(i, clifford.unitaries[n["vop"]])
  146. return state
  147. def to_stabilizer(self):
  148. """ Get the stabilizer of this graph """
  149. output = {a: {} for a in self.node}
  150. for a, b in it.product(self.node, self.node):
  151. if a == b:
  152. output[a][b] = "X"
  153. elif a in self.adj[b]:
  154. output[a][b] = "Z"
  155. else:
  156. output[a][b] = "I"
  157. return output
  158. def adj_list(self):
  159. """ For comparison with Anders and Briegel's C++ implementation """
  160. rows = []
  161. for key, node in self.node.items():
  162. adj = " ".join(map(str, sorted(self.adj[key])))
  163. vop = clifford.get_name(node["vop"])
  164. s = "Vertex {}: VOp {}, neighbors {}".format(key, vop, adj)
  165. rows.append(s)
  166. return " \n".join(rows) + " \n"
  167. def __eq__(self, other):
  168. """ Check equality between graphs """
  169. return self.adj == other.adj and self.node == other.node