Anders and Briegel in Python
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

279 lines
8.8KB

  1. """
  2. Provides an extremely basic graph structure, based on key/value pairs
  3. """
  4. import itertools as it
  5. import json
  6. import qi, clifford, util
  7. import random
  8. class GraphState(object):
  9. def __init__(self, nodes=[]):
  10. self.adj, self.node = {}, {}
  11. self.add_nodes(nodes)
  12. def add_node(self, v, **kwargs):
  13. """ Add a node """
  14. assert not v in self.node
  15. self.adj[v] = {}
  16. self.node[v] = {"vop": clifford.by_name["hadamard"]}
  17. self.node[v].update(kwargs)
  18. def add_nodes(self, nodes):
  19. """ Add a buncha nodes """
  20. for n in nodes:
  21. self.add_node(n)
  22. def add_edge(self, v1, v2, data={}):
  23. """ Add an edge between two vertices in the self """
  24. assert v1 != v2
  25. self.adj[v1][v2] = data
  26. self.adj[v2][v1] = data
  27. def add_edges(self, edges):
  28. """ Add a buncha edges """
  29. for (v1, v2) in edges:
  30. self.add_edge(v1, v2)
  31. def del_edge(self, v1, v2):
  32. """ Delete an edge between two vertices in the self """
  33. del self.adj[v1][v2]
  34. del self.adj[v2][v1]
  35. def has_edge(self, v1, v2):
  36. """ Test existence of an edge between two vertices in the self """
  37. return v2 in self.adj[v1]
  38. def toggle_edge(self, v1, v2):
  39. """ Toggle an edge between two vertices in the self """
  40. if self.has_edge(v1, v2):
  41. self.del_edge(v1, v2)
  42. else:
  43. self.add_edge(v1, v2)
  44. def edgelist(self):
  45. """ Describe a graph as an edgelist """
  46. # TODO: inefficient
  47. edges = set(tuple(sorted((i, n)))
  48. for i, v in self.adj.items()
  49. for n in v)
  50. return tuple(edges)
  51. def remove_vop(self, a, avoid):
  52. """ Reduces VOP[a] to the identity """
  53. others = set(self.adj[a]) - {avoid}
  54. swap_qubit = others.pop() if others else avoid
  55. for v in reversed(clifford.decompositions[self.node[a]["vop"]]):
  56. if v == "x":
  57. self.local_complementation(a, "U ->")
  58. else:
  59. self.local_complementation(swap_qubit, "V ->")
  60. def local_complementation(self, v, prefix=""):
  61. """ As defined in LISTING 1 of Anders & Briegel """
  62. for i, j in it.combinations(self.adj[v], 2):
  63. self.toggle_edge(i, j)
  64. self.node[v]["vop"] = clifford.times_table[
  65. self.node[v]["vop"], clifford.by_name["msqx_h"]]
  66. for i in self.adj[v]:
  67. self.node[i]["vop"] = clifford.times_table[
  68. self.node[i]["vop"], clifford.by_name["sqz_h"]]
  69. def act_local_rotation(self, v, op):
  70. """ Act a local rotation """
  71. rotation = clifford.by_name[str(op)]
  72. self.node[v]["vop"] = clifford.times_table[
  73. rotation, self.node[v]["vop"]]
  74. def act_hadamard(self, qubit):
  75. """ Shorthand """
  76. self.act_local_rotation(qubit, 10)
  77. def lonely(self, a, b):
  78. """ Is this qubit lonely ? """
  79. return len(self.adj[a]) > (b in self.adj[a])
  80. def act_cz(self, a, b):
  81. """ Act a controlled-phase gate on two qubits """
  82. if self.lonely(a, b):
  83. self.remove_vop(a, b)
  84. if self.lonely(b, a):
  85. self.remove_vop(b, a)
  86. if self.lonely(a, b) and not clifford.is_diagonal(self.node[a]["vop"]):
  87. self.remove_vop(a, b)
  88. edge = self.has_edge(a, b)
  89. va = self.node[a]["vop"]
  90. vb = self.node[b]["vop"]
  91. new_edge, self.node[a]["vop"], self.node[b]["vop"] = \
  92. clifford.cz_table[edge, va, vb]
  93. if new_edge != edge:
  94. self.toggle_edge(a, b)
  95. def measure(self, node, basis):
  96. """ Measure in an arbitrary basis """
  97. basis = clifford.by_name[basis]
  98. ha = clifford.conjugation_table[self.node[node]["vop"]]
  99. basis, phase = clifford.conjugate(basis, ha)
  100. if basis == clifford.by_name["px"]:
  101. result = self.measure_x(node)
  102. elif basis == clifford.by_name["py"]:
  103. result = self.measure_y(node)
  104. elif basis == clifford.by_name["pz"]:
  105. result = self.measure_z(node)
  106. else:
  107. raise ValueError("You can only measure in {X,Y,Z}")
  108. # Flip the result if we have negative phase
  109. if phase == -1:
  110. result = not result
  111. return result
  112. def toggle_edges(a, b):
  113. """ Toggle edges between vertex sets a and b """
  114. done = {}
  115. for i, j in it.product(a, b):
  116. if i == j and not (i, j) in done:
  117. done.add((i, j), (j, i))
  118. self.toggle_edge(i, j)
  119. def measure_x(self, node, result=0):
  120. """ Measure the graph in the X-basis """
  121. if len(self.adj[node]) == 0:
  122. return 0
  123. result = random.choice([0, 1])
  124. # Pick a vertex
  125. friend = next(self.adj[node].iterkeys())
  126. # TODO: yuk yuk yuk
  127. if result:
  128. # Do a z on all ngb(vb) \ ngb(v) \ {v}, and some other stuff
  129. self.act_local_rotation(node, "pz")
  130. self.act_local_rotation(friend, "msqy")
  131. for n in set(self.adj[friend]) - set(self.adj(node)) - {node}:
  132. self.act_local_rotation(n, "pz")
  133. else:
  134. # Do a z on all ngb(v) \ ngb(vb) \ {vb}, and sqy on the friend
  135. self.act_local_rotation(friend, "sqy")
  136. for n in set(self.adj[node]) - set(self.adj(friend)) - {friend}:
  137. self.act_local_rotation(n, "pz")
  138. # TODO: Yuk. Just awful!
  139. a = set(self.adj[node].keys())
  140. b = set(self.adj[friend].keys())
  141. self.toggle_edges(a, b)
  142. intersection = a & b
  143. for i, j in it.combinations(intersection, 2):
  144. self.toggle_edge(i, j)
  145. for n in a - {friend}:
  146. self.toggle_edge(friend, n)
  147. return result
  148. def measure_y(self, node, result=None):
  149. """ Measure the graph in the Y-basis """
  150. result = random.choice([0, 1])
  151. # Do some rotations
  152. for neighbour in self.adj[node]:
  153. # NB: should these be hermitian_conjugated?
  154. self.act_local_rotation(neighbour, "sqz" if result else "msqz")
  155. # A sort of local complementation
  156. vngbh = set(self.adj[node]) | {node}
  157. for i, j in it.combinations(vngbh, 2):
  158. self.toggle_edge(i, j)
  159. self.act_local_rotation(node, "msqz" if result else "msqz_h")
  160. return result
  161. def measure_z(self, node, result=None):
  162. """ Measure the graph in the Z-basis """
  163. result = random.choice([0, 1])
  164. # Disconnect
  165. for neighbour in self.adj[node]:
  166. self.del_edge(node, neighbour)
  167. if result:
  168. self.act_local_rotation(neighbour, "pz")
  169. # Rotate
  170. if result:
  171. self.act_local_rotation(node, "px")
  172. self.act_local_rotation(node, "hadamard")
  173. return result
  174. def order(self):
  175. """ Get the number of qubits """
  176. return len(self.node)
  177. def __str__(self):
  178. """ Represent as a string for quick debugging """
  179. node = {key: clifford.get_name(value["vop"])
  180. for key, value in self.node.items()}
  181. nbstr = str(self.adj)
  182. return "graph:\n node: {}\n adj: {}\n".format(node, nbstr)
  183. def to_json(self, stringify=False):
  184. """
  185. Convert the graph to JSON form.
  186. JSON keys must be strings, But sometimes it is useful to have
  187. a JSON-like object whose keys are tuples!
  188. """
  189. if stringify:
  190. node = {str(key): value for key, value in self.node.items()}
  191. adj = {str(key): {str(key): value for key, value in ngbh.items()}
  192. for key, ngbh in self.adj.items()}
  193. return {"node": node, "adj": adj}
  194. else:
  195. return {"node": self.node, "adj": self.adj}
  196. def from_json(self, data):
  197. """ Reconstruct from JSON """
  198. self.__init__([])
  199. # TODO
  200. def to_state_vector(self):
  201. """ Get the full state vector """
  202. if len(self.node) > 15:
  203. raise ValueError("Cannot build state vector: too many qubits")
  204. state = qi.CircuitModel(len(self.node))
  205. for i in range(len(self.node)):
  206. state.act_hadamard(i)
  207. for i, j in self.edgelist():
  208. state.act_cz(i, j)
  209. for i, n in self.node.items():
  210. state.act_local_rotation(i, clifford.unitaries[n["vop"]])
  211. return state
  212. def to_stabilizer(self):
  213. """ Get the stabilizer of this graph """
  214. output = {a: {} for a in self.node}
  215. for a, b in it.product(self.node, self.node):
  216. if a == b:
  217. output[a][b] = "X"
  218. elif a in self.adj[b]:
  219. output[a][b] = "Z"
  220. else:
  221. output[a][b] = "I"
  222. # TODO: signs
  223. return output
  224. def __eq__(self, other):
  225. """ Check equality between graphs """
  226. return self.adj == other.adj and self.node == other.node