Anders and Briegel in Python
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

116 rindas
3.5KB

  1. import numpy as np
  2. import itertools as it
  3. from abp import clifford
  4. from abp import build_tables
  5. from abp import qi
  6. import pytest
  7. def identify_pauli(m):
  8. """ Given a signed Pauli matrix, name it. """
  9. for sign in (+1, -1):
  10. for pauli_label, pauli in zip("xyz", qi.paulis):
  11. if np.allclose(sign * pauli, m):
  12. return sign, pauli_label
  13. def test_find_clifford():
  14. """ Test that slightly suspicious function """
  15. assert build_tables.find_clifford(qi.id, clifford.unitaries) == 0
  16. assert build_tables.find_clifford(qi.px, clifford.unitaries) == 1
  17. def get_action(u):
  18. """ What does this unitary operator do to the Paulis? """
  19. return [identify_pauli(u.dot(p.dot(qi.hermitian_conjugate(u)))) for p in qi.paulis]
  20. def format_action(action):
  21. return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action)
  22. def test_we_have_24_matrices():
  23. """ Check that we have 24 unique actions on the Bloch sphere """
  24. actions = set(tuple(get_action(u)) for u in clifford.unitaries)
  25. assert len(set(actions)) == 24
  26. def test_we_have_all_useful_gates():
  27. """ Check that all the interesting gates are included up to a global phase """
  28. for name, u in list(qi.by_name.items()):
  29. build_tables.find_clifford(u, clifford.unitaries)
  30. def test_group():
  31. """ Test we are really in a group """
  32. matches = set()
  33. for a, b in it.combinations(clifford.unitaries, 2):
  34. i = build_tables.find_clifford(a.dot(b), clifford.unitaries)
  35. matches.add(i)
  36. assert len(matches) == 24
  37. def test_conjugation_table():
  38. """ Check that the table of Hermitian conjugates is okay """
  39. assert len(set(clifford.conjugation_table)) == 24
  40. def test_cz_table_makes_sense():
  41. """ Test the CZ table is symmetric """
  42. hadamard = clifford.hadamard
  43. assert all(clifford.cz_table[0, 0, 0] == [1, 0, 0])
  44. assert all(clifford.cz_table[1, 0, 0] == [0, 0, 0])
  45. assert all(
  46. clifford.cz_table[0, hadamard, hadamard] == [0, hadamard, hadamard])
  47. def test_commuters():
  48. """ Test that commutation is good """
  49. assert len(build_tables.get_commuters(clifford.unitaries)) == 4
  50. def test_conjugation():
  51. """ Test that clifford.conugate() agrees with graphsim.LocCliffOp.conjugate """
  52. try:
  53. from anders_briegel import graphsim
  54. except ImportError:
  55. pytest.skip("Original C++ is not available, skipping test")
  56. for operation_index, transform_index in it.product(list(range(4)), list(range(24))):
  57. transform = graphsim.LocCliffOp(transform_index)
  58. operation = graphsim.LocCliffOp(operation_index)
  59. phase = operation.conjugate(transform).ph
  60. phase = [1, 0, -1][phase]
  61. new_operation = operation.op
  62. NEW_OPERATION, PHASE = clifford.conjugate(
  63. operation_index, transform_index)
  64. assert new_operation == NEW_OPERATION
  65. assert PHASE == phase
  66. def test_cz_table():
  67. """ Does the CZ code work good? """
  68. state_table = build_tables.get_state_table(clifford.unitaries)
  69. rows = it.product([0, 1], it.combinations_with_replacement(list(range(24)), 2))
  70. for bond, (c1, c2) in rows:
  71. # Pick the input state
  72. input_state = state_table[bond, c1, c2]
  73. # Go and compute the output
  74. computed_output = np.dot(qi.cz, input_state)
  75. computed_output = qi.normalize_global_phase(computed_output)
  76. # Now look up the answer in the table
  77. bondp, c1p, c2p = clifford.cz_table[bond, c1, c2]
  78. table_output = state_table[bondp, c1p, c2p]
  79. assert np.allclose(computed_output, table_output)