.. abp documentation master file, created by sphinx-quickstart on Sun Jul 24 18:12:02 2016. You can adapt this file completely to your liking, but it should at least contain the root `toctree` directive. ``abp`` =============================== This is the documentation for ``abp``. It's a work in progress. .. toctree:: :hidden: :maxdepth: 2 modules ``abp`` is a Python port of Anders and Briegel' s `method `_ for fast simulation of Clifford circuits. That means that you can make quantum states of thousands of qubits, perform any sequence of Clifford operations, and measure in any of :math:`\{\sigma_x, \sigma_y, \sigma_z\}`. Installing ---------------------------- You can install from ``pip``: .. code-block:: bash $ pip install --user abp==0.4.22 Alternatively, clone from the `github repo `_ and run ``setup.py``: .. code-block:: bash $ git clone https://github.com/peteshadbolt/abp $ cd abp $ python setup.py install --user If you want to modify and test ``abp`` without having to re-install, switch into ``develop`` mode: .. code-block:: bash $ python setup.py develop --user Quickstart ---------------------------- Let's make a new ``GraphState`` object with a register of three qubits: >>> from abp import GraphState >>> g = GraphState(3) All the qubits are initialized by default in the :math:`|+\rangle` state:: >>> print g.to_state_vector() |000❭: √1/8 + i √0 |100❭: √1/8 + i √0 |010❭: √1/8 + i √0 |110❭: √1/8 + i √0 |001❭: √1/8 + i √0 |101❭: √1/8 + i √0 |011❭: √1/8 + i √0 |111❭: √1/8 + i √0 We can also check the stabilizer tableau:: >>> print g.to_stabilizer() 0 1 2 --------- X X X Or look directly at the vertex operators and neighbour lists:: >>> print g 0: IA - 1: IA - 2: IA - This representation might be unfamiliar. Each row shows the index of the qubit, then the **vertex operator**, then a list of neighbouring qubits. To understand vertex operators, read the original paper by Anders and Briegel. Let's act a Hadamard gate on the zeroth qubit -- this will evolve qubit ``0`` to the :math:`H|+\rangle = |1\rangle` state:: >>> g.act_hadamard(0) >>> print g.to_state_vector() |000❭: √1/4 + i √0 |010❭: √1/4 + i √0 |001❭: √1/4 + i √0 |011❭: √1/4 + i √0 >>> print g 0: YC - 1: IA - 2: IA - And now run some CZ gates:: >>> g.act_cz(0,1) >>> g.act_cz(1,2) >>> print g 0: YC - 1: IA (2,) 2: IA (1,) >>> print g.to_state_vector() |000❭: √1/4 + i √0 |010❭: √1/4 + i √0 |001❭: √1/4 + i √0 |011❭: -√1/4 + i √0 Tidy up a bit:: >>> g.del_node(0) >>> g.act_hadamard(0) >>> print g.to_state_vector() |00❭: √1/2 + i √0 |11❭: √1/2 + i √0 Cool, we made a Bell state. Incidentally, those those state vectors and stabilizers are genuine Python objects, not just stringy representations of the state:: >>> g = abp.GraphState(2) >>> g.act_cz(0, 1) >>> g.act_hadamard(0) >>> psi = g.to_state_vector() >>> print psi |00❭: √1/2 + i √0 |11❭: √1/2 + i √0 ``psi`` is a state vector -- i.e. it is an exponentially large vector of complex numbers. We can still run gates on it:: >>> psi.act_cnot(0, 1) >>> psi.act_hadamard(0) >>> print psi |00❭: √1 + i √0 But these operations will be very slow. Let's have a look at the stabilizer tableau:: >>> tab = g.to_stabilizer() >>> print tab 0 1 ------ Z Z X X >>> print tab.tableau {0: {0: 3, 1: 3}, 1: {0: 1, 1: 1}} >>> print tab[0, 0] 3 Visualization ---------------------- ``abp`` comes with a tool to visualize graph states in a WebGL compatible web browser (Chrome, Firefox, Safari etc). It uses a client-server architecture. First, run ``abpserver -v`` in a terminal: .. code-block:: bash $ abpserver -v Listening on port 5000 for clients.. This ought to pop open a browser window at ``http://localhost:5001/``. You can run ``abpserver --help`` for help. Now, in another terminal, use ``abp.fancy.GraphState`` to run a Clifford circuit:: >>> from abp.fancy import GraphState >>> g = GraphState(10) >>> g.act_circuit([(i, "hadamard") for i in range(10)]) >>> g.act_circuit([((i, i+1), "cz") for i in range(9)]) >>> g.update() And you should see a 3D visualization of the state. You can call ``update()`` in a loop to see an animation. By default, the graph is automatically laid out in 3D using the Fruchterman-Reingold force-directed algorithm (i.e. springs). If you want to specify geometry, give each node a position attribute:: >>> g.add_qubit(0, position={"x": 0, "y":0, "z":0}, vop="identity") >>> g.add_qubit(0, position={"x": 1, "y":0, "z":0}, vop="identity") There's a utility function in ``abp.util`` to construct those dictionaries:: >>> from abp.util import xyz >>> g.add_qubit(0, position=xyz(0, 0, 0), vop="identity") >>> g.add_qubit(1, position=xyz(0, 0, 1), vop="identity") Note that if **any** nodes are missing a ``position`` attribute, ``abp`` will revert to automatic layout for **all** qubits. GraphState API ------------------------- The ``abp.GraphState`` class is the main interface to ``abp``. .. autoclass:: abp.GraphState :special-members: __init__ :members: .. _clifford: The Clifford group ---------------------- .. automodule:: abp.clifford | The ``clifford`` module provides a few useful functions: .. autofunction:: abp.clifford.use_old_cz :noindex: Reference ---------------------------- More detailed docs are available here: * :ref:`genindex` * :ref:`modindex` * :ref:`search`