#!/usr/bin/python # -*- coding: utf-8 -*- """ Generates and enumerates the 24 elements of the local Clifford group Following the prescription of Anders (thesis pg. 26): > Table 2.1: The 24 elements of the local Clifford group. The row index (here called the “sign symbol”) shows how the operator > U permutes the Pauli operators σ = X, Y, Z under the conjugation σ = ±UσU† . The column index (the “permutation > symbol”) indicates the sign obtained under the conjugation: For operators U in the I column it is the sign of the permutation > (indicated on the left). For elements in the X, Y and Z columns, it is this sign only if the conjugated Pauli operator is the one > indicated by the column header and the opposite sign otherwise. """ # TODO: # - check that we re-generate the table # - do conjugation # - do times table # - write tests from numpy import * def identify_pauli(m): """ Given a signed Pauli matrix, name it. """ for sign in (+1, -1): for pauli_label, pauli in zip("xyz", paulis): if allclose(sign * pauli, m): return sign, pauli_label def get_action(u): """ What does this unitary operator do to the Paulis? """ return [identify_pauli(u * p * u.H) for p in paulis] def format_action(action): """ Format an action as a string """ return "".join("{}{}".format("+" if s >= 0 else "-", p) for s, p in action) # Some two-qubit matrices i = matrix(eye(2, dtype=complex)) px = matrix([[0, 1], [1, 0]], dtype=complex) py = matrix([[0, -1j], [1j, 0]], dtype=complex) pz = matrix([[1, 0], [0, -1]], dtype=complex) h = matrix([[1, 1], [1, -1]], dtype=complex) / sqrt(2) p = matrix([[1, 0], [0, 1j]], dtype=complex) paulis = (px, py, pz) # Some two-qubit matrices i = matrix(eye(2, dtype=complex)) h = matrix([[1, 1], [1, -1]], dtype=complex) / sqrt(2) p = matrix([[1, 0], [0, 1j]], dtype=complex) # Basic single-qubit gates s_gates = (("i", i), ("p", p), ("pp", p * p), ("ppp", p * p * p)) c_gates = [("i", i), ("h", h), ("hp", h * p), ("hpp", h * p * p), ("hppp", h * p * p * p), ("hpph", h * p * p * h)] # Build the table of VOPs according to Anders (verbatim from thesis) table = (("a", "xyz", +1), ("b", "yxz", -1), ("c", "zyx", -1), ("d", "xzy", -1), ("e", "yzx", +1), ("f", "zxy", +1)) # Build a big ol lookup table vop_names = [] vop_actions = [] vop_gates = [None] * 24 vop_unitaries = [None] * 24 for label, permutation, sign in table: for column, operator in zip("ixyz", "i" + permutation): effect = [((sign if (p == column or column == "i") else -sign), p) for p in permutation] vop_names.append(column + label) # think we can dump "operator" vop_actions.append(format_action(effect)) for s_name, s_gate in s_gates: for c_name, c_gate in c_gates: u = s_gate * c_gate action = format_action(get_action(u)) index = vop_actions.index(action) vop_gates[index] = s_name + c_name vop_unitaries[index] = u # Add some more useful lookups vop_by_name = {n: {"name":n, "index": i, "action": a, "gates": g, "unitary": u} for n, i, a, g, u in zip(vop_names, xrange(24), vop_actions, vop_gates, vop_unitaries)} vop_by_action = {a: {"name": n, "index": i, "action":a, "gates": g, "unitary": u} for n, i, a, g, u in zip(vop_names, xrange(24), vop_actions, vop_gates, vop_unitaries)} names, unitaries = [], [] for c_name, c_gate in c_gates: for s_name, s_gate in s_gates: names.append(s_name+c_name) unitaries.append(s_gate * c_gate) print s_gate * c_gate.round(2) print i = matrix(eye(2, dtype=complex)) px = matrix([[0, 1], [1, 0]], dtype=complex) py = matrix([[0, -1j], [1j, 0]], dtype=complex) pz = matrix([[1, 0], [0, -1]], dtype=complex) h = matrix([[1, 1], [1, -1]], dtype=complex) / sqrt(2) p = matrix([[1, 0], [0, 1j]], dtype=complex) #for m in i, px, py, pz: #print any([allclose(x, m) for x in unitaries])