import clifford as lc from numpy import * from scipy.linalg import sqrtm sqy = sqrtm(1j*lc.py) msqy = sqrtm(-1j*lc.py) sqz = sqrtm(1j*lc.pz) msqz = sqrtm(-1j*lc.pz) sqx = sqrtm(1j*lc.px) msqx = sqrtm(-1j*lc.px) paulis = (lc.px, lc.py, lc.pz) def identify_pauli(m): """ Given a signed Pauli matrix, name it. """ for sign in (+1, -1): for pauli_label, pauli in zip("xyz", paulis): if allclose(sign * pauli, m): return sign, pauli_label def get_action(u): """ What does this unitary operator do to the Paulis? """ return [identify_pauli(u * p * u.H) for p in paulis] def format_action(action): return "".join("{}{}".format("+" if s>=0 else "-", p) for s, p in action) def test_we_have_all_useful_gates(): """ Check that all the interesting gates are included up to a global phase """ names = "i", "px", "py", "pz", "h", "p" unitaries = lc.i, lc.px, lc.py, lc.pz, lc.h, lc.p for name, unitary in zip(names, unitaries): foundit = False for i, clifford in enumerate(lc.unitaries): if allclose(clifford, unitary): foundit = True print "{}\t=\tlc.unitaries[{}]".format(name, i) assert foundit names = "sqrt(ix)", "sqrt(-ix)", "sqrt(iy)", "sqrt(-iy)", "sqrt(iz)", "sqrt(-iz)", unitaries = sqz, msqz, sqy, msqy, sqx, msqx for name, unitary in zip(names, unitaries): foundit = False for phase in range(8): for i, clifford in enumerate(lc.unitaries): if allclose(exp(1j*phase*pi/4.)*clifford, unitary): foundit = True print "{}\t=\texp({} . i . pi/4).lc.unitaries[{}]".format(name, phase, i) assert foundit def test_we_have_24_matrices(): """ Check that we have 24 unique actions on the Bloch sphere """ actions = set(tuple(get_action(u)) for u in lc.unitaries) assert len(set(actions)) == 24