from graph import * import viz import itertools as it import clifford def cphase(g, vops, a, b): """ Act a controlled-phase gate on two qubits """ if g[a]-{b}: remove_vop(g, vops, a, b) if g[b]-{a}: remove_vop(g, vops, b, a) if g[a]-{b}: remove_vop(g, vops, a, b) edge = has_edge(g, a, b) new_edge, vops[a], vops[b] = cphase_table[edge, vops[a], vops[b]] if new_edge != edge: toggle_edge(g, a, b) def remove_vop(g, vops, a, avoid): """ Reduces VOP[a] to the identity, avoiding (if possible) the use of vertex b as a swapping partner """ others = g[a] - {avoid} swap_qubit = others.pop() if others else avoid for v in reversed(clifford.decompositions[vops[a]]): local_complementation(g, vops, a if v == "x" else swap_qubit) def local_complementation(g, vops, v): """ As defined in LISTING 1 of Anders & Briegel """ for i, j in it.combinations(g[v], 2): toggle_edge(g, i, j) # Update VOPs vops[v] = clifford.times_table[vops[v]][clifford.by_name["sqx"]] for i in g[v]: vops[i] = clifford.times_table[vops[i]][clifford.by_name["msqz"]] if __name__ == '__main__': g, vops = graph() add_edge(g, 0, 1) add_edge(g, 1, 2) add_edge(g, 0, 2) add_edge(g, 0, 3) add_edge(g, 6, 7) pos = viz.draw(g, vops, "out.pdf") remove_vop(g, vops, 0, 1) remove_vop(g, vops, 1, 2) cphase(g, vops, 0, 1) viz.draw(g, vops, "out2.pdf", pos)