""" Enumerates the 24 elements of the local Clifford group, providing multiplication and conjugation tables permutations = (id, ha, ph, ha*ph, ha*ph*ha, ha*ph*ha*ph) signs = (id, px, py, pz) unitaries = [p*s for p in permutations for s in signs] """ import numpy as np from tqdm import tqdm import qi from functools import reduce from util import cache_to_disk # TODO: make this more efficient / shorter def find_up_to_phase(u): """ Find the index of a given u within a list of unitaries, up to a global phase """ for i, t in enumerate(unitaries): for phase in range(8): if np.allclose(t, np.exp(1j * phase * np.pi / 4.) * u): return i, phase raise IndexError def compose_u(decomposition): """ Get the unitary representation of a particular decomposition """ us = (elements[c] for c in decomposition) return np.matrix(reduce(np.dot, us), dtype=complex) def name_of(vop): """ Get the formatted name of a VOP """ return "%s" % get_name[vop] if vop in get_name else "VOP%d" % vop @cache_to_disk("tables.pkl") def construct_tables(): """ Constructs / caches multiplication and conjugation tables """ by_name = {name: find_up_to_phase(u)[0] for name, u in qi.by_name.items()} get_name = {v:k for k, v in by_name.items()} conjugation_table = [find_up_to_phase(u.H)[0] for i, u in enumerate(unitaries)] times_table = [[find_up_to_phase(u * v)[0] for v in unitaries] for u in tqdm(unitaries)] return by_name, get_name, conjugation_table, times_table # Various useful tables decompositions = ("xxxx", "xx", "zzxx", "zz", "zxx", "z", "zzz", "xxz", "xzx", "xzxxx", "xzzzx", "xxxzx", "xzz", "zzx", "xxx", "x", "zzzx", "xxzx", "zx", "zxxx", "xxxz", "xzzz", "xz", "xzxx") elements = {"x": qi.sqx, "z": qi.msqz} unitaries = [compose_u(d) for d in decompositions] by_name, get_name, conjugation_table, times_table = construct_tables() if __name__ == '__main__': print by_name print get_name