Pārlūkot izejas kodu

Test local complementation

master
Pete Shadbolt pirms 8 gadiem
vecāks
revīzija
fa5138622a
3 mainītis faili ar 30 papildinājumiem un 14 dzēšanām
  1. +8
    -12
      cz.py
  2. +19
    -0
      tests/test_cz.py
  3. +3
    -2
      viz.py

+ 8
- 12
cz.py Parādīt failu

@@ -1,6 +1,5 @@
from matplotlib import pyplot as plt
from graph import *
from viz import draw
import viz
import itertools as it
import clifford

@@ -16,15 +15,12 @@ def local_complementation(g, vops, v):
vops[i] = clifford.times_table[vops[i]][clifford.msqz]

if __name__ == '__main__':
g, vops = graph(10)
g, vops = graph()
add_edge(g, 0, 1)
add_edge(g, 1, 3)
add_edge(g, 3, 2)
add_edge(g, 3, 0)
add_edge(g, 2, 0)
add_edge(g, 0, 5)
vops[0] = 1
draw(g, vops)
plt.clf()
add_edge(g, 1, 2)
add_edge(g, 0, 2)
add_edge(g, 0, 3)

viz.draw(g, vops, "out.pdf")
local_complementation(g, vops, 0)
draw(g, vops, "out2.pdf")
viz.draw(g, vops, "out2.pdf")

+ 19
- 0
tests/test_cz.py Parādīt failu

@@ -0,0 +1,19 @@
import cz
from graph import *
import viz

def test_local_complementation():
""" Test that local complementation works as expected """
g, vops = graph()
add_edge(g, 0, 1)
add_edge(g, 0, 2)
add_edge(g, 1, 2)
add_edge(g, 0, 3)
cz.local_complementation(g, vops, 0)
assert has_edge(g, 0, 1)
assert has_edge(g, 0, 2)
assert not has_edge(g, 1, 2)
assert has_edge(g, 3, 2)
assert has_edge(g, 3, 1)

# TODO: test VOP conditions

+ 3
- 2
viz.py Parādīt failu

@@ -6,10 +6,11 @@ import networkx as nx
from matplotlib import pyplot as plt
from graph import *

VOP_COLORS = ["red", "green", "blue"]
VOP_COLORS = ["red", "green", "blue", "orange", "yellow", "purple", "black", "white"]

def draw(graph, vops, filename="out.pdf", ns=500):
""" Draw a graph with networkx layout """
plt.clf()
g = nx.from_edgelist(edgelist(graph))
pos = nx.spring_layout(g)
colors = [VOP_COLORS[vop % len(VOP_COLORS)] for vop in vops]
@@ -21,7 +22,7 @@ def draw(graph, vops, filename="out.pdf", ns=500):
plt.savefig(filename)

if __name__ == '__main__':
g, vops = graph(10)
g, vops = graph()
add_edge(g, 0, 1)
add_edge(g, 1, 3)
add_edge(g, 3, 2)


Notiek ielāde…
Atcelt
Saglabāt