@@ -1,32 +1,42 @@ | |||
import qi | |||
import numpy as np | |||
import tables | |||
import tqdm | |||
from tqdm import tqdm | |||
import itertools as it | |||
# TODO: ensure that Constraint 1 is met. i.e. | |||
# if C1 is in Z, choose C1' such that it is in Z | |||
def get_krontable(): | |||
table = np.zeros((24,24,4,4), dtype=complex) | |||
for i, j in it.product(range(24), range(24)): | |||
u1 = tables.unitaries[i] | |||
u2 = tables.unitaries[j] | |||
table[i, j, :, :] = np.kron(u1, u2) | |||
return table | |||
table1 = [] | |||
table2 = [] | |||
def find(bond, c1, c2, z, krontable): | |||
# Figure out the target state | |||
state = qi.bond if bond else qi.nobond | |||
target = qi.cz * krontable[c1, c2] * state | |||
bond = qi.cz * np.kron(qi.plus, qi.plus) | |||
no_bond = np.kron(qi.plus, qi.plus) | |||
# Choose the sets to search over | |||
s1 = z if c1 in z else xrange(24) | |||
s2 = z if c2 in z else xrange(24) | |||
def find(thing, table): | |||
for index, trial in enumerate(table): | |||
for qq in range(16): | |||
if np.allclose(thing, np.exp(2j*np.pi*qq/16.) * trial): | |||
yield index | |||
for bond, c1p, c2p in it.product([0,1], s1, s2): | |||
state = qi.bond if bond else qi.nobond | |||
trial = krontable[c1p, c2p] * state | |||
for phase in range(8): | |||
if np.allclose(target, np.exp(1j * phase * np.pi / 4.) * trial): | |||
return bond, c1p, c2p | |||
for state in bond, no_bond: | |||
for a in tables.unitaries: | |||
for b in tables.unitaries: | |||
state = np.kron(a, b) * state | |||
table1.append(state) | |||
table2.append(qi.cz*state) | |||
raise IndexError | |||
for index, thing in enumerate(table2): | |||
print "{} -> {}".format(index, list(find(thing, table1))) | |||
z = [tables.find(u, tables.unitaries) for u in qi.id, qi.px, qi.pz, qi.ph, qi.ph.H] | |||
krontable = get_krontable() | |||
cz_table = np.zeros((2, 24, 24, 3)) | |||
for bond, c1, c2 in tqdm(list(it.product([0,1], range(24), range(24)))): | |||
cz_table[bond, c1, c2] = find(bond, c1, c2, z, krontable) | |||
np.save("cz_table.npy", cz_table) | |||
@@ -30,3 +30,6 @@ paulis = (px, py, pz) | |||
common_us = id, px, py, pz, ha, ph, sqz, msqz, sqy, msqy, sqx, msqx | |||
names = "identity", "px", "py", "pz", "hadamard", "phase", "sqz", "msqz", "sqy", "msqy", "sqx", "msqx" | |||
by_name = dict(zip(names, common_us)) | |||
bond = cz * np.kron(plus, plus) | |||
nobond = np.kron(plus, plus) |
@@ -13,18 +13,18 @@ import cPickle | |||
import qi | |||
# TODO: make this more efficient / shorter | |||
def find_up_to_phase(u): | |||
def find(needle, haystack): | |||
""" Find the index of a given u within a list of unitaries, up to a global phase """ | |||
for i, t in enumerate(unitaries): | |||
for i, t in enumerate(haystack): | |||
for phase in range(8): | |||
if np.allclose(t, np.exp(1j * phase * np.pi / 4.) * u): | |||
return i, phase | |||
if np.allclose(t, np.exp(1j * phase * np.pi / 4.) * needle): | |||
return i | |||
raise IndexError | |||
def compose_u(decomposition): | |||
""" Get the unitary representation of a particular decomposition """ | |||
us = (elements[c] for c in decomposition) | |||
us = ({"x": qi.sqx, "z": qi.msqz}[c] for c in decomposition) | |||
return np.matrix(reduce(np.dot, us), dtype=complex) | |||
@@ -38,14 +38,15 @@ def construct_tables(filename="tables.cache"): | |||
if os.path.exists(filename): | |||
return cPickle.load(open(filename, "r")) | |||
by_name = {name: find_up_to_phase(u)[0] for name, u in qi.by_name.items()} | |||
by_name = {name: find(u, unitaries) for name, u in qi.by_name.items()} | |||
get_name = {v:k for k, v in by_name.items()} | |||
conjugation_table = [find_up_to_phase(u.H)[0] | |||
conjugation_table = [find(u.H, unitaries) | |||
for i, u in enumerate(unitaries)] | |||
times_table = [[find_up_to_phase(u * v)[0] for v in unitaries] | |||
times_table = [[find(u * v, unitaries) for v in unitaries] | |||
for u in tqdm(unitaries)] | |||
cz_table = None | |||
output = by_name, get_name, conjugation_table, times_table, cz_table | |||
with open(filename, "w") as f: | |||
cPickle.dump(output, f) | |||
return output | |||
@@ -53,7 +54,5 @@ def construct_tables(filename="tables.cache"): | |||
decompositions = ("xxxx", "xx", "zzxx", "zz", "zxx", "z", "zzz", "xxz", | |||
"xzx", "xzxxx", "xzzzx", "xxxzx", "xzz", "zzx", "xxx", "x", | |||
"zzzx", "xxzx", "zx", "zxxx", "xxxz", "xzzz", "xz", "xzxx") | |||
elements = {"x": qi.sqx, "z": qi.msqz} | |||
unitaries = [compose_u(d) for d in decompositions] | |||
by_name, get_name, conjugation_table, times_table, cz_table = construct_tables() | |||
@@ -14,11 +14,11 @@ def identify_pauli(m): | |||
return sign, pauli_label | |||
def _test_find_up_to_phase(): | |||
def _test_find(): | |||
""" Test that slightly suspicious function """ | |||
assert lc.find_up_to_phase(id) == (0, 0) | |||
assert lc.find_up_to_phase(px) == (1, 0) | |||
assert lc.find_up_to_phase(exp(1j*pi/4.)*ha) == (4, 7) | |||
assert lc.find(id, lc.unitaries) == 0 | |||
assert lc.find(px, lc.unitaries) == 1 | |||
assert lc.find(exp(1j*pi/4.)*ha, lc.unitaries) == 4 | |||
def get_action(u): | |||
""" What does this unitary operator do to the Paulis? """ | |||
@@ -38,14 +38,14 @@ def test_we_have_24_matrices(): | |||
def test_we_have_all_useful_gates(): | |||
""" Check that all the interesting gates are included up to a global phase """ | |||
for name, u in qi.by_name.items(): | |||
lc.find_up_to_phase(u) | |||
lc.find(u, lc.unitaries) | |||
def _test_group(): | |||
""" Test we are really in a group """ | |||
matches = set() | |||
for a, b in tqdm(it.combinations(lc.unitaries, 2), "Testing this is a group"): | |||
i, phase = lc.find_up_to_phase(a*b) | |||
i, phase = lc.find(a*b, lc.unitaries) | |||
matches.add(i) | |||
assert len(matches)==24 | |||