| @@ -1,32 +1,42 @@ | |||
| import qi | |||
| import numpy as np | |||
| import tables | |||
| import tqdm | |||
| from tqdm import tqdm | |||
| import itertools as it | |||
| # TODO: ensure that Constraint 1 is met. i.e. | |||
| # if C1 is in Z, choose C1' such that it is in Z | |||
| def get_krontable(): | |||
| table = np.zeros((24,24,4,4), dtype=complex) | |||
| for i, j in it.product(range(24), range(24)): | |||
| u1 = tables.unitaries[i] | |||
| u2 = tables.unitaries[j] | |||
| table[i, j, :, :] = np.kron(u1, u2) | |||
| return table | |||
| table1 = [] | |||
| table2 = [] | |||
| def find(bond, c1, c2, z, krontable): | |||
| # Figure out the target state | |||
| state = qi.bond if bond else qi.nobond | |||
| target = qi.cz * krontable[c1, c2] * state | |||
| bond = qi.cz * np.kron(qi.plus, qi.plus) | |||
| no_bond = np.kron(qi.plus, qi.plus) | |||
| # Choose the sets to search over | |||
| s1 = z if c1 in z else xrange(24) | |||
| s2 = z if c2 in z else xrange(24) | |||
| def find(thing, table): | |||
| for index, trial in enumerate(table): | |||
| for qq in range(16): | |||
| if np.allclose(thing, np.exp(2j*np.pi*qq/16.) * trial): | |||
| yield index | |||
| for bond, c1p, c2p in it.product([0,1], s1, s2): | |||
| state = qi.bond if bond else qi.nobond | |||
| trial = krontable[c1p, c2p] * state | |||
| for phase in range(8): | |||
| if np.allclose(target, np.exp(1j * phase * np.pi / 4.) * trial): | |||
| return bond, c1p, c2p | |||
| for state in bond, no_bond: | |||
| for a in tables.unitaries: | |||
| for b in tables.unitaries: | |||
| state = np.kron(a, b) * state | |||
| table1.append(state) | |||
| table2.append(qi.cz*state) | |||
| raise IndexError | |||
| for index, thing in enumerate(table2): | |||
| print "{} -> {}".format(index, list(find(thing, table1))) | |||
| z = [tables.find(u, tables.unitaries) for u in qi.id, qi.px, qi.pz, qi.ph, qi.ph.H] | |||
| krontable = get_krontable() | |||
| cz_table = np.zeros((2, 24, 24, 3)) | |||
| for bond, c1, c2 in tqdm(list(it.product([0,1], range(24), range(24)))): | |||
| cz_table[bond, c1, c2] = find(bond, c1, c2, z, krontable) | |||
| np.save("cz_table.npy", cz_table) | |||
| @@ -30,3 +30,6 @@ paulis = (px, py, pz) | |||
| common_us = id, px, py, pz, ha, ph, sqz, msqz, sqy, msqy, sqx, msqx | |||
| names = "identity", "px", "py", "pz", "hadamard", "phase", "sqz", "msqz", "sqy", "msqy", "sqx", "msqx" | |||
| by_name = dict(zip(names, common_us)) | |||
| bond = cz * np.kron(plus, plus) | |||
| nobond = np.kron(plus, plus) | |||
| @@ -13,18 +13,18 @@ import cPickle | |||
| import qi | |||
| # TODO: make this more efficient / shorter | |||
| def find_up_to_phase(u): | |||
| def find(needle, haystack): | |||
| """ Find the index of a given u within a list of unitaries, up to a global phase """ | |||
| for i, t in enumerate(unitaries): | |||
| for i, t in enumerate(haystack): | |||
| for phase in range(8): | |||
| if np.allclose(t, np.exp(1j * phase * np.pi / 4.) * u): | |||
| return i, phase | |||
| if np.allclose(t, np.exp(1j * phase * np.pi / 4.) * needle): | |||
| return i | |||
| raise IndexError | |||
| def compose_u(decomposition): | |||
| """ Get the unitary representation of a particular decomposition """ | |||
| us = (elements[c] for c in decomposition) | |||
| us = ({"x": qi.sqx, "z": qi.msqz}[c] for c in decomposition) | |||
| return np.matrix(reduce(np.dot, us), dtype=complex) | |||
| @@ -38,14 +38,15 @@ def construct_tables(filename="tables.cache"): | |||
| if os.path.exists(filename): | |||
| return cPickle.load(open(filename, "r")) | |||
| by_name = {name: find_up_to_phase(u)[0] for name, u in qi.by_name.items()} | |||
| by_name = {name: find(u, unitaries) for name, u in qi.by_name.items()} | |||
| get_name = {v:k for k, v in by_name.items()} | |||
| conjugation_table = [find_up_to_phase(u.H)[0] | |||
| conjugation_table = [find(u.H, unitaries) | |||
| for i, u in enumerate(unitaries)] | |||
| times_table = [[find_up_to_phase(u * v)[0] for v in unitaries] | |||
| times_table = [[find(u * v, unitaries) for v in unitaries] | |||
| for u in tqdm(unitaries)] | |||
| cz_table = None | |||
| output = by_name, get_name, conjugation_table, times_table, cz_table | |||
| with open(filename, "w") as f: | |||
| cPickle.dump(output, f) | |||
| return output | |||
| @@ -53,7 +54,5 @@ def construct_tables(filename="tables.cache"): | |||
| decompositions = ("xxxx", "xx", "zzxx", "zz", "zxx", "z", "zzz", "xxz", | |||
| "xzx", "xzxxx", "xzzzx", "xxxzx", "xzz", "zzx", "xxx", "x", | |||
| "zzzx", "xxzx", "zx", "zxxx", "xxxz", "xzzz", "xz", "xzxx") | |||
| elements = {"x": qi.sqx, "z": qi.msqz} | |||
| unitaries = [compose_u(d) for d in decompositions] | |||
| by_name, get_name, conjugation_table, times_table, cz_table = construct_tables() | |||
| @@ -14,11 +14,11 @@ def identify_pauli(m): | |||
| return sign, pauli_label | |||
| def _test_find_up_to_phase(): | |||
| def _test_find(): | |||
| """ Test that slightly suspicious function """ | |||
| assert lc.find_up_to_phase(id) == (0, 0) | |||
| assert lc.find_up_to_phase(px) == (1, 0) | |||
| assert lc.find_up_to_phase(exp(1j*pi/4.)*ha) == (4, 7) | |||
| assert lc.find(id, lc.unitaries) == 0 | |||
| assert lc.find(px, lc.unitaries) == 1 | |||
| assert lc.find(exp(1j*pi/4.)*ha, lc.unitaries) == 4 | |||
| def get_action(u): | |||
| """ What does this unitary operator do to the Paulis? """ | |||
| @@ -38,14 +38,14 @@ def test_we_have_24_matrices(): | |||
| def test_we_have_all_useful_gates(): | |||
| """ Check that all the interesting gates are included up to a global phase """ | |||
| for name, u in qi.by_name.items(): | |||
| lc.find_up_to_phase(u) | |||
| lc.find(u, lc.unitaries) | |||
| def _test_group(): | |||
| """ Test we are really in a group """ | |||
| matches = set() | |||
| for a, b in tqdm(it.combinations(lc.unitaries, 2), "Testing this is a group"): | |||
| i, phase = lc.find_up_to_phase(a*b) | |||
| i, phase = lc.find(a*b, lc.unitaries) | |||
| matches.add(i) | |||
| assert len(matches)==24 | |||