@@ -1,4 +1,4 @@ | |||||
, "Stabilizer representation VS A&B"""" | |||||
""" | |||||
This module implements Anders and Briegel's method for fast simulation of Clifford circuits. | This module implements Anders and Briegel's method for fast simulation of Clifford circuits. | ||||
""" | """ | ||||
@@ -400,7 +400,8 @@ class GraphState(object): | |||||
return state | return state | ||||
def to_stabilizer(self): | def to_stabilizer(self): | ||||
""" Get the stabilizer representation of the state:: | |||||
""" | |||||
Get the stabilizer representation of the state:: | |||||
>>> print g.to_stabilizer() | >>> print g.to_stabilizer() | ||||
- X I I I I | - X I I I I | ||||
@@ -409,7 +410,7 @@ class GraphState(object): | |||||
I I I Z I | I I I Z I | ||||
I I I I Z | I I I I Z | ||||
""" | |||||
""" | |||||
return Stabilizer(self) | return Stabilizer(self) | ||||
def __eq__(self, other): | def __eq__(self, other): | ||||
@@ -424,10 +425,3 @@ class GraphState(object): | |||||
g.deterministic = self.deterministic | g.deterministic = self.deterministic | ||||
return g | return g | ||||
if __name__ == '__main__': | |||||
g = GraphState() | |||||
g.add_nodes(range(10)) | |||||
g._add_edge(0, 5) | |||||
g.act_local_rotation(6, 10) | |||||
print g | |||||
print g.to_state_vector() |
@@ -3,15 +3,19 @@ | |||||
You can adapt this file completely to your liking, but it should at least | You can adapt this file completely to your liking, but it should at least | ||||
contain the root `toctree` directive. | contain the root `toctree` directive. | ||||
.. toctree:: | |||||
:maxdepth: 2 | |||||
``abp`` | ``abp`` | ||||
=============================== | =============================== | ||||
This is the documentation for ``abp``. It's a work in progress. | This is the documentation for ``abp``. It's a work in progress. | ||||
.. toctree:: | |||||
:hidden: | |||||
:maxdepth: 2 | |||||
modules | |||||
``abp`` is a Python port of Anders and Briegel' s `method <https://arxiv.org/abs/quant-ph/0504117>`_ for fast simulation of Clifford circuits. | ``abp`` is a Python port of Anders and Briegel' s `method <https://arxiv.org/abs/quant-ph/0504117>`_ for fast simulation of Clifford circuits. | ||||
That means that you can make quantum states of thousands of qubits, perform any sequence of Clifford operations, and measure in any of :math:`\{\sigma_x, \sigma_y, \sigma_z\}`. | That means that you can make quantum states of thousands of qubits, perform any sequence of Clifford operations, and measure in any of :math:`\{\sigma_x, \sigma_y, \sigma_z\}`. | ||||