|
|
@@ -1,61 +0,0 @@ |
|
|
|
""" |
|
|
|
This is a sketch of a consistent language for defining resource states and lattices. |
|
|
|
""" |
|
|
|
|
|
|
|
import networkx as nx |
|
|
|
from abp.fancy import GraphState |
|
|
|
|
|
|
|
def union(*graphs): |
|
|
|
""" Assumes that all graphs are completely independent and uniquely labelled """ |
|
|
|
output = nx.Graph() |
|
|
|
output.node = dict(i for g in graphs for i in g.node.items()) |
|
|
|
output.adj = dict(i for g in graphs for i in g.adj.items()) |
|
|
|
return output |
|
|
|
|
|
|
|
def relabel(g, label): |
|
|
|
""" Shorthand relabel """ |
|
|
|
return nx.relabel_nodes(g, lambda x: (label, x)) |
|
|
|
|
|
|
|
def fuse(psi, na, nb): |
|
|
|
""" Deterministic fusion for testing purposes """ |
|
|
|
neighbors_a, neighbors_b = psi.neighbors(na), psi.neighbors(nb) |
|
|
|
new_edges = ((i, j) for i in neighbors_a for j in neighbors_b if i != j) |
|
|
|
psi.add_edges_from(new_edges) |
|
|
|
psi.remove_nodes_from((na, nb)) |
|
|
|
return psi |
|
|
|
|
|
|
|
def ghz(label): |
|
|
|
""" A 3-GHZ state """ |
|
|
|
psi = nx.Graph(((0, 1), (1, 2))) |
|
|
|
return relabel(psi, label) |
|
|
|
|
|
|
|
def microcluster(label): |
|
|
|
""" A microcluster """ |
|
|
|
psi = union(ghz(0), ghz(1), ghz(2)) |
|
|
|
psi = fuse(psi, (0, 1), (1, 0)) |
|
|
|
psi = fuse(psi, (1, 2), (2, 1)) |
|
|
|
return relabel(psi, label) |
|
|
|
|
|
|
|
def unit_cell(label): |
|
|
|
""" A simple ring-like unit cell """ |
|
|
|
psi = union(microcluster(0), microcluster(1), microcluster(2), microcluster(3)) |
|
|
|
psi = fuse(psi, (0, (0, 2)), (1, (2, 2))) |
|
|
|
psi = fuse(psi, (1, (0, 2)), (2, (2, 2))) |
|
|
|
psi = fuse(psi, (2, (0, 2)), (3, (2, 2))) |
|
|
|
psi = fuse(psi, (3, (0, 2)), (0, (2, 2))) |
|
|
|
return relabel(psi, label) |
|
|
|
|
|
|
|
def position(node): |
|
|
|
print node |
|
|
|
return {} |
|
|
|
|
|
|
|
def annotate(g, f): |
|
|
|
""" Annotate a graph """ |
|
|
|
for node in g.nodes(): |
|
|
|
g.node[node].update(f(node)) |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
psi = union(unit_cell((0, 0)), unit_cell((2, 0))) |
|
|
|
annotate(psi, position) |
|
|
|
g = GraphState(psi) |
|
|
|
|