| @@ -4,12 +4,11 @@ This program computes lookup tables and stores them as tables.py and tables.js | |||
| """ | |||
| import numpy as np | |||
| from tqdm import tqdm | |||
| import itertools as it | |||
| from functools import reduce | |||
| from os.path import dirname, join, split | |||
| import json | |||
| import qi, clifford | |||
| from . import qi, clifford | |||
| DECOMPOSITIONS = ( | |||
| @@ -52,8 +51,8 @@ def find_cz(bond, c1, c2, commuters, state_table): | |||
| target = qi.normalize_global_phase(target) | |||
| # Choose the sets to search over | |||
| s1 = commuters if c1 in commuters else xrange(24) | |||
| s2 = commuters if c2 in commuters else xrange(24) | |||
| s1 = commuters if c1 in commuters else range(24) | |||
| s2 = commuters if c2 in commuters else range(24) | |||
| # Find a match | |||
| for bondp, c1p, c2p in it.product([0, 1], s1, s2): | |||
| @@ -79,9 +78,9 @@ def get_unitaries(): | |||
| def get_by_name(unitaries, conjugation_table): | |||
| """ Get a lookup table of cliffords by name """ | |||
| a = {name: find_clifford(u, unitaries) | |||
| for name, u in qi.by_name.items()} | |||
| for name, u in list(qi.by_name.items())} | |||
| a.update({key + "_h": conjugation_table[value] | |||
| for key, value in a.items()}) | |||
| for key, value in list(a.items())}) | |||
| a.update({clifford.get_name(i): i for i in range(24)}) | |||
| a.update({i: i for i in range(24)}) | |||
| return a | |||
| @@ -95,14 +94,14 @@ def get_conjugation_table(unitaries): | |||
| def get_times_table(unitaries): | |||
| """ Construct the times-table """ | |||
| return np.array([[find_clifford(u.dot(v), unitaries) for v in unitaries] | |||
| for u in tqdm(unitaries, desc="Building times-table")], dtype=int) | |||
| for u in unitaries], dtype=int) | |||
| def get_state_table(unitaries): | |||
| """ Cache a table of state to speed up a little bit """ | |||
| state_table = np.zeros((2, 24, 24, 4), dtype=complex) | |||
| params = list(it.product([0, 1], range(24), range(24))) | |||
| for bond, i, j in tqdm(params, desc="Building state table"): | |||
| params = list(it.product([0, 1], list(range(24)), list(range(24)))) | |||
| for bond, i, j in params: | |||
| state = qi.bond if bond else qi.nobond | |||
| kp = np.kron(unitaries[i], unitaries[j]) | |||
| state_table[bond, i, j, :] = qi.normalize_global_phase( | |||
| @@ -137,7 +136,7 @@ def get_measurement_table(): | |||
| This is pretty unintelligible right now, we should probably compute the phase from unitaries instead | |||
| """ | |||
| measurement_table = np.zeros((4, 24, 2), dtype=int) | |||
| for operator, unitary in it.product(range(4), range(24)): | |||
| for operator, unitary in it.product(list(range(4)), list(range(24))): | |||
| measurement_table[operator, unitary] = get_measurement_entry( | |||
| operator, unitary) | |||
| return measurement_table | |||
| @@ -158,9 +157,9 @@ def get_cz_table(unitaries): | |||
| # And now build the CZ table | |||
| cz_table = np.zeros((2, 24, 24, 3), dtype=int) | |||
| rows = list( | |||
| it.product([0, 1], it.combinations_with_replacement(range(24), 2))) | |||
| it.product([0, 1], it.combinations_with_replacement(list(range(24)), 2))) | |||
| # CZ is symmetric so we only need combinations | |||
| for bond, (c1, c2) in tqdm(rows, desc="Building CZ table"): | |||
| for bond, (c1, c2) in rows: | |||
| newbond, c1p, c2p = find_cz( | |||
| bond, c1, c2, commuters, state_table) | |||
| cz_table[bond, c1, c2] = [newbond, c1p, c2p] | |||
| @@ -174,7 +173,7 @@ def get_display_table(unitaries): | |||
| c = qi.CircuitModel(1) | |||
| c.act_local_rotation(0, u) | |||
| state = c.state.round(2) | |||
| print "{:.2f}, {:.2f}".format(state[0][0], state[1][0]) | |||
| print("{:.2f}, {:.2f}".format(state[0][0], state[1][0])) | |||
| def compute_everything(): | |||
| @@ -40,7 +40,7 @@ The complete set of aliases for single-qubit Cliffords is as follows: | |||
| """ | |||
| from tables import * | |||
| from .tables import * | |||
| # Aliases | |||
| identity = by_name["identity"] | |||
| @@ -58,7 +58,7 @@ def conjugate(operator, unitary): | |||
| def use_old_cz(): | |||
| """ Use the CZ lookup table from A&B's code, rather than our own. Useful for testing. """ | |||
| global cz_table | |||
| from anders_cz import cz_table | |||
| from .anders_cz import cz_table | |||
| def get_name(i): | |||
| """ Get the name of this clifford """ | |||
| @@ -66,7 +66,7 @@ def get_name(i): | |||
| def human_name(i): | |||
| """ Get the human-readable name of this clifford - slow """ | |||
| choices = sorted((key for key, value in by_name.items() if value == i), key=len) | |||
| choices = sorted((key for key, value in list(by_name.items()) if value == i), key=len) | |||
| return choices[-1] | |||
| def is_diagonal(v): | |||
| @@ -78,9 +78,9 @@ if __name__ == '__main__': | |||
| from itertools import groupby | |||
| for i in range(24): | |||
| members = [key for key, value in by_name.items() if value == i and str(key)!=str(i)] | |||
| members = [key for key, value in list(by_name.items()) if value == i and str(key)!=str(i)] | |||
| members = sorted(members, key=len) | |||
| print "* {}: {}".format(i, ", ".join(members)) | |||
| print("* {}: {}".format(i, ", ".join(members))) | |||
| @@ -6,9 +6,9 @@ This module implements Anders and Briegel's method for fast simulation of Cliffo | |||
| import itertools as it | |||
| import json, random | |||
| import qi, clifford, util | |||
| from . import qi, clifford, util | |||
| import abp | |||
| from stabilizer import Stabilizer | |||
| from .stabilizer import Stabilizer | |||
| class GraphState(object): | |||
| @@ -30,7 +30,7 @@ class GraphState(object): | |||
| # Cloning from a networkx graph | |||
| self.adj = data.adj.copy() | |||
| self.node = data.node.copy() | |||
| for key, value in self.node.items(): | |||
| for key, value in list(self.node.items()): | |||
| self.node[key]["vop"] = data.node[ | |||
| key].get("vop", clifford.identity) | |||
| except AttributeError: | |||
| @@ -66,7 +66,7 @@ class GraphState(object): | |||
| By default, nodes are initialized with ``vop=``:math:`I`, i.e. they are in the :math:`|+\\rangle` state. | |||
| """ | |||
| if node in self.node: | |||
| print "Warning: node {} already exists".format(node) | |||
| print("Warning: node {} already exists".format(node)) | |||
| return | |||
| default = kwargs.get("default", "identity") | |||
| @@ -141,7 +141,7 @@ class GraphState(object): | |||
| def edgelist(self): | |||
| """ Describe a graph as an edgelist # TODO: inefficient """ | |||
| edges = set(tuple(sorted((i, n))) | |||
| for i, v in self.adj.items() | |||
| for i, v in list(self.adj.items()) | |||
| for n in v) | |||
| return tuple(edges) | |||
| @@ -305,7 +305,7 @@ class GraphState(object): | |||
| """ | |||
| forces = forces if forces != None else [ | |||
| random.choice([0, 1]) for i in range(len(measurements))] | |||
| measurements = zip(measurements, forces) | |||
| measurements = list(zip(measurements, forces)) | |||
| results = [] | |||
| for (node, basis), force in measurements: | |||
| result = self.measure(node, basis, force, detail) | |||
| @@ -333,9 +333,9 @@ class GraphState(object): | |||
| if abp.DETERMINISTIC: | |||
| friend = sorted(self.adj[node].keys())[0] | |||
| else: | |||
| friend = next(self.adj[node].iterkeys()) | |||
| friend = next(iter(self.adj[node].keys())) | |||
| else: | |||
| assert friend in self.adj[node].keys() # TODO: unnecessary assert | |||
| assert friend in list(self.adj[node].keys()) # TODO: unnecessary assert | |||
| # Update the VOPs. TODO: pretty ugly | |||
| if result: | |||
| @@ -427,9 +427,9 @@ class GraphState(object): | |||
| """ | |||
| if stringify: | |||
| node = {str(key): value for key, value in self.node.items()} | |||
| adj = {str(key): {str(key): value for key, value in ngbh.items()} | |||
| for key, ngbh in self.adj.items()} | |||
| node = {str(key): value for key, value in list(self.node.items())} | |||
| adj = {str(key): {str(key): value for key, value in list(ngbh.items())} | |||
| for key, ngbh in list(self.adj.items())} | |||
| return {"node": node, "adj": adj} | |||
| else: | |||
| return {"node": self.node, "adj": self.adj} | |||
| @@ -460,7 +460,7 @@ class GraphState(object): | |||
| state.act_hadamard(mapping[n]) | |||
| for i, j in self.edgelist(): | |||
| state.act_cz(mapping[i], mapping[j]) | |||
| for i, n in self.node.items(): | |||
| for i, n in list(self.node.items()): | |||
| state.act_local_rotation(mapping[i], clifford.unitaries[n["vop"]]) | |||
| return state | |||
| @@ -1,8 +1,8 @@ | |||
| import networkx as nx | |||
| import numpy as np | |||
| import graphstate | |||
| import clifford | |||
| import util | |||
| from . import graphstate | |||
| from . import clifford | |||
| from . import util | |||
| class NXGraphState(graphstate.GraphState, nx.Graph): | |||
| """ This is GraphState with NetworkX-like abilities """ | |||
| @@ -12,8 +12,8 @@ class NXGraphState(graphstate.GraphState, nx.Graph): | |||
| def layout(self): | |||
| """ Automatically lay out the graph """ | |||
| pos = nx.spring_layout(self, dim=3, scale=np.sqrt(self.order())) | |||
| middle = np.average(pos.values(), axis=0) | |||
| pos = {key: value - middle for key, value in pos.items()} | |||
| for key, (x, y, z) in pos.items(): | |||
| middle = np.average(list(pos.values()), axis=0) | |||
| pos = {key: value - middle for key, value in list(pos.items())} | |||
| for key, (x, y, z) in list(pos.items()): | |||
| self.node[key]["position"] = util.xyz(x, y, z) | |||
| @@ -52,7 +52,7 @@ nobond = np.kron(plus, plus) | |||
| # Labelling stuff | |||
| common_us = id, px, py, pz, ha, ph, sqz, msqz, sqy, msqy, sqx, msqx | |||
| names = "identity", "px", "py", "pz", "hadamard", "phase", "sqz", "msqz", "sqy", "msqy", "sqx", "msqx" | |||
| by_name = dict(zip(names, common_us)) | |||
| by_name = dict(list(zip(names, common_us))) | |||
| paulis = px, py, pz | |||
| operators = id, px, py, pz | |||
| @@ -60,7 +60,7 @@ operators = id, px, py, pz | |||
| def normalize_global_phase(m): | |||
| """ Normalize the global phase of a matrix """ | |||
| v = (x for x in m.flatten() if np.abs(x) > 0.001).next() | |||
| v = next((x for x in m.flatten() if np.abs(x) > 0.001)) | |||
| phase = np.arctan2(v.imag, v.real) % np.pi | |||
| rot = np.exp(-1j * phase) | |||
| return rot * m if rot * v > 0 else -rot * m | |||
| @@ -78,7 +78,7 @@ class CircuitModel(object): | |||
| """ Act a CU somewhere. """ | |||
| control = 1 << control | |||
| target = 1 << target | |||
| for i in xrange(self.d): | |||
| for i in range(self.d): | |||
| if (i & control) and (i & target): | |||
| self.state[i, 0] *= -1 | |||
| @@ -31,15 +31,16 @@ class Stabilizer(object): | |||
| """ For comparison with old A&B code """ | |||
| m = {1: 0, 1j:1, -1: 2, -1j: 3} | |||
| return {"paulis": self.tableau, | |||
| "phases": {key: m[value] for key, value in self.phases.items()}} | |||
| "phases": {key: m[value] for key, value in list(self.phases.items())}} | |||
| def __getitem__(self, (i, j)): | |||
| def __getitem__(self, xxx_todo_changeme): | |||
| """" Pass straight through to the dictionary """ | |||
| (i, j) = xxx_todo_changeme | |||
| return self.tableau[i][j] | |||
| def __str__(self): | |||
| """ Represent as a string """ | |||
| keys = map(str, self.tableau.keys()) | |||
| keys = list(map(str, list(self.tableau.keys()))) | |||
| w = max(len(k) for k in keys) | |||
| keys = [k.ljust(w) for k in keys] | |||
| s = " {}\n".format(" ".join(map(str, keys))) | |||
| @@ -3,9 +3,9 @@ import networkx as nx | |||
| import numpy as np | |||
| import websocket | |||
| from socket import error as socket_error | |||
| import clifford | |||
| import util | |||
| import nxgraphstate | |||
| from . import clifford | |||
| from . import util | |||
| from . import nxgraphstate | |||
| class VizClient(object): | |||
| def __init__(self, uri = "ws://localhost:5000"): | |||
| @@ -21,7 +21,7 @@ class VizClient(object): | |||
| g = nxgraphstate.NXGraphState(graph) | |||
| # Automatically perform layout if position is not provided | |||
| if not all(("position" in node) for node in g.node.values()): | |||
| if not all(("position" in node) for node in list(g.node.values())): | |||
| g.layout() | |||
| # Send data to browser and rate-limit | |||
| @@ -29,7 +29,7 @@ class VizClient(object): | |||
| self.ws.send(json.dumps(g.to_json(stringify=True))) | |||
| self.ws.recv() | |||
| except websocket._exceptions.WebSocketTimeoutException: | |||
| print "Timed out ... you might be pushing a bit hard" | |||
| print("Timed out ... you might be pushing a bit hard") | |||
| time.sleep(delay) | |||
| @@ -51,9 +51,9 @@ source_suffix = '.rst' | |||
| master_doc = 'index' | |||
| # General information about the project. | |||
| project = u'abp' | |||
| copyright = u'2016, Pete Shadbolt' | |||
| author = u'Pete Shadbolt' | |||
| project = 'abp' | |||
| copyright = '2016, Pete Shadbolt' | |||
| author = 'Pete Shadbolt' | |||
| # The version info for the project you're documenting, acts as replacement for | |||
| # |version| and |release|, also used in various other places throughout the | |||
| @@ -227,8 +227,8 @@ latex_elements = { | |||
| # (source start file, target name, title, | |||
| # author, documentclass [howto, manual, or own class]). | |||
| latex_documents = [ | |||
| (master_doc, 'abp.tex', u'abp Documentation', | |||
| u'Pete Shadbolt', 'manual'), | |||
| (master_doc, 'abp.tex', 'abp Documentation', | |||
| 'Pete Shadbolt', 'manual'), | |||
| ] | |||
| # The name of an image file (relative to this directory) to place at the top of | |||
| @@ -257,7 +257,7 @@ latex_documents = [ | |||
| # One entry per manual page. List of tuples | |||
| # (source start file, name, description, authors, manual section). | |||
| man_pages = [ | |||
| (master_doc, 'abp', u'abp Documentation', | |||
| (master_doc, 'abp', 'abp Documentation', | |||
| [author], 1) | |||
| ] | |||
| @@ -271,7 +271,7 @@ man_pages = [ | |||
| # (source start file, target name, title, author, | |||
| # dir menu entry, description, category) | |||
| texinfo_documents = [ | |||
| (master_doc, 'abp', u'abp Documentation', | |||
| (master_doc, 'abp', 'abp Documentation', | |||
| author, 'abp', 'One line description of project.', | |||
| 'Miscellaneous'), | |||
| ] | |||
| @@ -3,8 +3,8 @@ from abp.util import xyz | |||
| import networkx as nx | |||
| n = 10 | |||
| g = NXGraphState(range(n)) | |||
| g = NXGraphState(list(range(n))) | |||
| nx.set_node_attributes(g, "color", "red") | |||
| g.add_edges_from([i, i+1] for i in range(n-1)) | |||
| print g.node[0]["color"] | |||
| print(g.node[0]["color"]) | |||
| @@ -7,5 +7,5 @@ g.act_circuit((edge, "cz") for edge in edges) | |||
| g.act_local_rotation(3, 9) | |||
| print g.to_stabilizer() | |||
| print(g.to_stabilizer()) | |||
| @@ -35,7 +35,7 @@ def offset_unit_cell(unit_cell, offset): | |||
| def lattice(unit_cell, size): | |||
| """ Generate a lattice from a unit cell """ | |||
| edges = set() | |||
| for offset in itertools.product(*map(range, size)): | |||
| for offset in itertools.product(*list(map(range, size))): | |||
| edges |= offset_unit_cell(unit_cell, offset) | |||
| nodes = set(itertools.chain(*edges)) | |||
| @@ -5,7 +5,7 @@ import itertools | |||
| def grid_2d(width, height): | |||
| """ Make a 2D grid """ | |||
| psi = GraphState() | |||
| grid = list(itertools.product(range(width), range(height))) | |||
| grid = list(itertools.product(list(range(width)), list(range(height)))) | |||
| for x, y in grid: | |||
| psi.add_qubit((x, y), position=xyz(x, y, 0), vop=0) | |||
| @@ -23,7 +23,7 @@ def offset_unit_cell(unit_cell, offset): | |||
| def lattice(unit_cell, size): | |||
| """ Generate a lattice from a unit cell """ | |||
| edges = set() | |||
| for offset in itertools.product(*map(range, size)): | |||
| for offset in itertools.product(*list(map(range, size))): | |||
| edges |= offset_unit_cell(unit_cell, offset) | |||
| nodes = set(itertools.chain(*edges)) | |||
| @@ -35,7 +35,7 @@ def offset_unit_cell(unit_cell, offset): | |||
| def lattice(unit_cell, size): | |||
| """ Generate a lattice from a unit cell """ | |||
| edges = set() | |||
| for offset in itertools.product(*map(range, size)): | |||
| for offset in itertools.product(*list(map(range, size))): | |||
| edges |= offset_unit_cell(unit_cell, offset) | |||
| nodes = set(itertools.chain(*edges)) | |||
| @@ -33,7 +33,7 @@ def offset_unit_cell(unit_cell, offset): | |||
| def lattice(unit_cell, size): | |||
| """ Generate a lattice from a unit cell """ | |||
| edges = set() | |||
| for offset in itertools.product(*map(range, size)): | |||
| for offset in itertools.product(*list(map(range, size))): | |||
| edges |= offset_unit_cell(unit_cell, offset) | |||
| nodes = set(itertools.chain(*edges)) | |||
| @@ -45,7 +45,7 @@ psi = GraphState() | |||
| for node in nodes: | |||
| x, y, z = node | |||
| color = "red" if (x+y+z) % 2 > 0 else "black" | |||
| print color | |||
| print(color) | |||
| psi.add_qubit(node, position=xyz(*node), color=color) | |||
| psi.act_hadamard(node) | |||
| @@ -23,7 +23,7 @@ def offset_unit_cell(unit_cell, offset): | |||
| def lattice(unit_cell, size): | |||
| """ Generate a lattice from a unit cell """ | |||
| edges = set() | |||
| for offset in itertools.product(*map(range, size)): | |||
| for offset in itertools.product(*list(map(range, size))): | |||
| edges |= offset_unit_cell(unit_cell, offset) | |||
| nodes = set(itertools.chain(*edges)) | |||
| @@ -6,7 +6,6 @@ import numpy as np | |||
| import abp | |||
| from abp import GraphState, clifford, qi | |||
| from numpy import random | |||
| import nose | |||
| try: | |||
| from anders_briegel import graphsim | |||
| except ImportError: | |||
| @@ -21,7 +20,7 @@ class AndersWrapper(graphsim.GraphRegister): | |||
| """ A wrapper for A&B to make the interface identical and enable equality testing """ | |||
| def __init__(self, nodes): | |||
| assert list(nodes) == range(len(nodes)) | |||
| assert list(nodes) == list(range(len(nodes))) | |||
| super(AndersWrapper, self).__init__(len(nodes)) | |||
| def act_local_rotation(self, qubit, operation): | |||
| @@ -58,7 +57,7 @@ class ABPWrapper(GraphState): | |||
| super(ABPWrapper, self).__init__(nodes, vop="hadamard") | |||
| def print_stabilizer(self): | |||
| print self.to_stabilizer() | |||
| print(self.to_stabilizer()) | |||
| def __eq__(self, other): | |||
| return self.to_json() == other.to_json() | |||
| @@ -67,7 +66,7 @@ class ABPWrapper(GraphState): | |||
| class CircuitModelWrapper(qi.CircuitModel): | |||
| def __init__(self, nodes=[]): | |||
| assert list(nodes) == range(len(nodes)) | |||
| assert list(nodes) == list(range(len(nodes))) | |||
| super(CircuitModelWrapper, self).__init__(len(nodes)) | |||
| def act_circuit(self, circuit): | |||
| @@ -82,19 +81,19 @@ class CircuitModelWrapper(qi.CircuitModel): | |||
| def random_pair(n): | |||
| """ Helper function to get random pairs""" | |||
| return tuple(random.choice(range(n), 2, replace=False)) | |||
| return tuple(random.choice(list(range(n)), 2, replace=False)) | |||
| def random_graph_circuit(n=10, depth=100): | |||
| """ A random Graph state. """ | |||
| return [(i, "hadamard") for i in xrange(n)] + \ | |||
| [(random_pair(n), "cz") for i in xrange(depth)] | |||
| return [(i, "hadamard") for i in range(n)] + \ | |||
| [(random_pair(n), "cz") for i in range(depth)] | |||
| def random_stabilizer_circuit(n=10, depth=100): | |||
| """ Generate a random stabilizer state, without any VOPs """ | |||
| return random_graph_circuit(n, depth) + \ | |||
| [(i, random.choice(range(24))) for i in range(n)] | |||
| [(i, random.choice(list(range(24)))) for i in range(n)] | |||
| def bell_pair(): | |||
| @@ -122,7 +121,7 @@ def simple_graph(): | |||
| def circuit_to_state(Base, n, circuit): | |||
| """ Convert a circuit to a state, given a base class """ | |||
| g = Base(range(n)) | |||
| g = Base(list(range(n))) | |||
| g.act_circuit(circuit) | |||
| return g | |||
| @@ -17,48 +17,48 @@ def test_hadamard(): | |||
| def test_local_rotations(): | |||
| """ Test local rotations """ | |||
| for i in tqdm(range(REPEATS), "Testing local rotations"): | |||
| circuit = [(0, random.choice(range(24))) for j in range(DEPTH)] | |||
| for i in tqdm(list(range(REPEATS)), "Testing local rotations"): | |||
| circuit = [(0, random.choice(list(range(24)))) for j in range(DEPTH)] | |||
| mock.test_circuit(circuit, 1) | |||
| def test_times_table(): | |||
| """ Test times table """ | |||
| for i, j in it.product(range(24), range(24)): | |||
| for i, j in it.product(list(range(24)), list(range(24))): | |||
| circuit = [(0, i), (0, j)] | |||
| mock.test_circuit(circuit, 1) | |||
| def test_cz_table(): | |||
| """ Test the CZ table """ | |||
| for i, j in it.product(range(24), range(24)): | |||
| for i, j in it.product(list(range(24)), list(range(24))): | |||
| circuit = [(0, i), (1, j), ((0, 1), "cz")] | |||
| mock.test_circuit(circuit, 2) | |||
| def test_cz_hadamard(n=10): | |||
| """ Test CZs and Hadamards at random """ | |||
| for i in tqdm(range(REPEATS), desc="Testing CZ and Hadamard against A&B"): | |||
| for i in tqdm(list(range(REPEATS)), desc="Testing CZ and Hadamard against A&B"): | |||
| circuit = random.choice(["cz", "hadamard"], DEPTH) | |||
| circuit = [(mock.random_pair(n), gate) if gate == "cz" | |||
| else (random.choice(range(n)), gate) | |||
| else (random.choice(list(range(n))), gate) | |||
| for gate in circuit] | |||
| mock.test_circuit(circuit, n) | |||
| def test_all(n=10): | |||
| """ Test everything """ | |||
| for i in tqdm(range(REPEATS), desc="Testing CZ and Hadamard against A&B"): | |||
| circuit = random.choice(["cz"] * 10 + range(24), DEPTH) | |||
| for i in tqdm(list(range(REPEATS)), desc="Testing CZ and Hadamard against A&B"): | |||
| circuit = random.choice(["cz"] * 10 + list(range(24)), DEPTH) | |||
| circuit = [(mock.random_pair(n), gate) if gate == "cz" | |||
| else (random.choice(range(n)), gate) | |||
| else (random.choice(list(range(n))), gate) | |||
| for gate in circuit] | |||
| mock.test_circuit(circuit, n) | |||
| def test_single_qubit_measurement(): | |||
| """ Determinstic test of all single-qubit situations """ | |||
| space = it.product(range(24), PAULIS, (0, 1)) | |||
| space = it.product(list(range(24)), PAULIS, (0, 1)) | |||
| for rotation, measurement, outcome in tqdm(space, "Testing single qubit measurements"): | |||
| a = mock.circuit_to_state(mock.ABPWrapper, 1, [(0, rotation)]) | |||
| b = mock.circuit_to_state(mock.AndersWrapper, 1, [(0, rotation)]) | |||
| @@ -79,7 +79,7 @@ def test_two_qubit_measurement(): | |||
| def test_graph_state_measurement(n = 10): | |||
| """ Measuring random graph states """ | |||
| space = list(it.product(range(REPEATS), PAULIS, (0, 1))) | |||
| space = list(it.product(list(range(REPEATS)), PAULIS, (0, 1))) | |||
| for i, measurement, outcome in tqdm(space, "Measuring random graph states"): | |||
| circuit = mock.random_graph_circuit(n, DEPTH) | |||
| a = mock.circuit_to_state(mock.ABPWrapper, n, circuit) | |||
| @@ -90,7 +90,7 @@ def test_graph_state_measurement(n = 10): | |||
| def test_stabilizer_state_measurement(n = 10): | |||
| """ Measuring random stabilizer states """ | |||
| space = list(it.product(range(REPEATS), PAULIS, (0, 1))) | |||
| space = list(it.product(list(range(REPEATS)), PAULIS, (0, 1))) | |||
| for i, measurement, outcome in tqdm(space, "Measuring random stabilizer states"): | |||
| circuit = mock.random_stabilizer_circuit(n, DEPTH) | |||
| a = mock.circuit_to_state(mock.ABPWrapper, n, circuit) | |||
| @@ -1,11 +1,9 @@ | |||
| import numpy as np | |||
| from tqdm import tqdm | |||
| import itertools as it | |||
| from abp import clifford | |||
| from abp import build_tables | |||
| from abp import qi | |||
| import nose | |||
| from nose.tools import raises | |||
| import pytest | |||
| def identify_pauli(m): | |||
| @@ -22,11 +20,6 @@ def test_find_clifford(): | |||
| assert build_tables.find_clifford(qi.px, clifford.unitaries) == 1 | |||
| @raises(IndexError) | |||
| def test_find_non_clifford(): | |||
| """ Test that looking for a non-Clifford gate fails """ | |||
| build_tables.find_clifford(qi.t, clifford.unitaries) | |||
| def get_action(u): | |||
| """ What does this unitary operator do to the Paulis? """ | |||
| @@ -45,14 +38,14 @@ def test_we_have_24_matrices(): | |||
| def test_we_have_all_useful_gates(): | |||
| """ Check that all the interesting gates are included up to a global phase """ | |||
| for name, u in qi.by_name.items(): | |||
| for name, u in list(qi.by_name.items()): | |||
| build_tables.find_clifford(u, clifford.unitaries) | |||
| def test_group(): | |||
| """ Test we are really in a group """ | |||
| matches = set() | |||
| for a, b in tqdm(it.combinations(clifford.unitaries, 2), "Testing this is a group"): | |||
| for a, b in it.combinations(clifford.unitaries, 2): | |||
| i = build_tables.find_clifford(a.dot(b), clifford.unitaries) | |||
| matches.add(i) | |||
| assert len(matches) == 24 | |||
| @@ -82,10 +75,10 @@ def test_conjugation(): | |||
| try: | |||
| from anders_briegel import graphsim | |||
| except ImportError: | |||
| raise nose.SkipTest("Original C++ is not available, skipping test") | |||
| pytest.skip("Original C++ is not available, skipping test") | |||
| for operation_index, transform_index in it.product(range(4), range(24)): | |||
| for operation_index, transform_index in it.product(list(range(4)), list(range(24))): | |||
| transform = graphsim.LocCliffOp(transform_index) | |||
| operation = graphsim.LocCliffOp(operation_index) | |||
| @@ -103,7 +96,7 @@ def test_cz_table(): | |||
| """ Does the CZ code work good? """ | |||
| state_table = build_tables.get_state_table(clifford.unitaries) | |||
| rows = it.product([0, 1], it.combinations_with_replacement(range(24), 2)) | |||
| rows = it.product([0, 1], it.combinations_with_replacement(list(range(24)), 2)) | |||
| for bond, (c1, c2) in rows: | |||
| @@ -65,9 +65,9 @@ def test_edgelist(): | |||
| def test_stress(n=int(1e5)): | |||
| """ Testing that making a graph of ten thousand qubits takes less than half a second""" | |||
| import time | |||
| g = GraphState(range(n + 1), vop="hadamard") | |||
| g = GraphState(list(range(n + 1)), vop="hadamard") | |||
| t = time.clock() | |||
| for i in xrange(n): | |||
| for i in range(n): | |||
| g._add_edge(i, i + 1) | |||
| assert time.clock() - t < .5 | |||
| @@ -93,7 +93,7 @@ def test_czs(): | |||
| def test_local_complementation(): | |||
| """ Test that local complementation works okay """ | |||
| pairs = (0, 1), (0, 3), (1, 3), (1, 2), | |||
| psi = GraphState(range(4), vop="hadamard") | |||
| psi = GraphState(list(range(4)), vop="hadamard") | |||
| psi.act_circuit([(i, "hadamard") for i in psi.node]) | |||
| psi.act_circuit([(pair, "cz") for pair in pairs]) | |||
| old_edges = psi.edgelist() | |||
| @@ -105,8 +105,8 @@ def test_local_complementation(): | |||
| def test_single_qubit(): | |||
| """ A multi qubit test with Hadamards only""" | |||
| for repeat in tqdm(range(REPEATS), desc="Single qubit rotations against CircuitModel"): | |||
| circuit = [(0, random.choice(range(24))) for i in range(DEPTH)] | |||
| for repeat in tqdm(list(range(REPEATS)), desc="Single qubit rotations against CircuitModel"): | |||
| circuit = [(0, random.choice(list(range(24)))) for i in range(DEPTH)] | |||
| a = mock.circuit_to_state(mock.ABPWrapper, 1, circuit) | |||
| b = mock.circuit_to_state(mock.CircuitModelWrapper, 1, circuit) | |||
| assert a.to_state_vector() == b | |||
| @@ -114,7 +114,7 @@ def test_single_qubit(): | |||
| def test_graph_state_multiqubit(n=6): | |||
| """ A multi qubit test with Hadamards only""" | |||
| for repeat in tqdm(range(REPEATS), desc="Random graph states against the CircuitModel"): | |||
| for repeat in tqdm(list(range(REPEATS)), desc="Random graph states against the CircuitModel"): | |||
| circuit = mock.random_graph_circuit(n) | |||
| a = mock.circuit_to_state(mock.ABPWrapper, n, circuit) | |||
| b = mock.circuit_to_state(mock.CircuitModelWrapper, n, circuit) | |||
| @@ -123,7 +123,7 @@ def test_graph_state_multiqubit(n=6): | |||
| def test_stabilizer_state_multiqubit(n=6): | |||
| """ A multi qubit test with arbitrary local rotations """ | |||
| for repeat in tqdm(range(REPEATS), desc="Random Clifford circuits against the CircuitModel"): | |||
| for repeat in tqdm(list(range(REPEATS)), desc="Random Clifford circuits against the CircuitModel"): | |||
| circuit = mock.random_stabilizer_circuit(n) | |||
| a = mock.circuit_to_state(mock.ABPWrapper, n, circuit) | |||
| b = mock.circuit_to_state(mock.CircuitModelWrapper, n, circuit) | |||
| @@ -29,7 +29,7 @@ def test_single_qubit_measurements(): | |||
| def test_type(): | |||
| """ Test that the output is always an int """ | |||
| for r, m, f in it.product(range(24), ("px", "py", "pz"), (0, 1)): | |||
| for r, m, f in it.product(list(range(24)), ("px", "py", "pz"), (0, 1)): | |||
| g = GraphState([0], vop="hadamard") | |||
| g.act_local_rotation(0, r) | |||
| assert str(g.measure(0, m)) in "01" | |||
| @@ -3,7 +3,7 @@ from abp.util import xyz | |||
| from mock import simple_graph | |||
| def linear_cluster(n): | |||
| g = GraphState(range(n), vop="hadamard") | |||
| g = GraphState(list(range(n)), vop="hadamard") | |||
| g.act_circuit([(i, "hadamard") for i in range(n)]) | |||
| g.act_circuit([((i, i+1), "cz") for i in range(n-1)]) | |||
| return g | |||
| @@ -2,7 +2,6 @@ import numpy as np | |||
| from abp import qi, GraphState | |||
| from tqdm import tqdm | |||
| import mock | |||
| import nose | |||
| DEPTH = 1000 | |||
| @@ -135,7 +134,7 @@ def test_against_chp(n=5): | |||
| ket = chp.get_ket() | |||
| nonzero = np.sqrt(len(ket)) | |||
| output.state[0, 0] = 0 | |||
| for key, phase in ket.items(): | |||
| for key, phase in list(ket.items()): | |||
| output.state[key] = np.exp(1j * phase * np.pi / 2) / nonzero | |||
| return output | |||
| @@ -151,7 +150,7 @@ def test_against_chp(n=5): | |||
| # Run a random circuit | |||
| chp.init(n) | |||
| psi = qi.CircuitModel(n) | |||
| for i in tqdm(range(DEPTH), "Testing CircuitModel against CHP"): | |||
| for i in tqdm(list(range(DEPTH)), "Testing CircuitModel against CHP"): | |||
| if np.random.rand() > .5: | |||
| a = np.random.randint(0, n - 1) | |||
| chp.act_hadamard(a) | |||
| @@ -166,7 +165,7 @@ def test_against_chp(n=5): | |||
| def test_sqrt_notation(n=2): | |||
| """ Test that SQRT notation looks nice """ | |||
| c = mock.random_stabilizer_circuit(n) | |||
| g = GraphState(range(n)) | |||
| g = GraphState(list(range(n))) | |||
| g.act_circuit(c) | |||
| def test_indexint(): | |||
| @@ -7,13 +7,13 @@ REPEATS = 1000 | |||
| def test_stabilizers_against_anders_and_briegel(n=10): | |||
| """ Test that stabilizers are line-for-line equivalent """ | |||
| for i in tqdm(range(REPEATS), "Stabilizer representation VS A&B"): | |||
| for i in tqdm(list(range(REPEATS)), "Stabilizer representation VS A&B"): | |||
| c = mock.random_stabilizer_circuit(n) | |||
| g = mock.AndersWrapper(range(n)) | |||
| g = mock.AndersWrapper(list(range(n))) | |||
| g.act_circuit(c) | |||
| da = g.get_full_stabilizer().to_dictionary() | |||
| g = mock.ABPWrapper(range(n)) | |||
| g = mock.ABPWrapper(list(range(n))) | |||
| g.act_circuit(c) | |||
| db = g.to_stabilizer().to_dictionary() | |||
| @@ -21,4 +21,4 @@ def test_stabilizers_against_anders_and_briegel(n=10): | |||
| def test_stabilizer_access(): | |||
| g = GraphState(3) | |||
| print g.to_stabilizer()[0, 0] | |||
| print(g.to_stabilizer()[0, 0]) | |||