| @@ -1,6 +1,6 @@ | |||
| import time, atexit, json | |||
| import sys | |||
| import networkx | |||
| import networkx as nx | |||
| import numpy as np | |||
| import websocket | |||
| from socket import error as socket_error | |||
| @@ -8,7 +8,7 @@ import graphstate | |||
| import clifford | |||
| import util | |||
| class GraphState(graphstate.GraphState, networkx.Graph): | |||
| class GraphState(graphstate.GraphState, nx.Graph): | |||
| def __init__(self, *args, **kwargs): | |||
| graphstate.GraphState.__init__(self, *args, **kwargs) | |||
| self.connect_to_server() | |||
| @@ -50,7 +50,7 @@ class GraphState(graphstate.GraphState, networkx.Graph): | |||
| def layout(self): | |||
| """ Automatically lay out the graph """ | |||
| pos = networkx.spring_layout(self, dim=3, scale=np.sqrt(self.order())) | |||
| pos = nx.spring_layout(self, dim=3, scale=np.sqrt(self.order())) | |||
| middle = np.average(pos.values(), axis=0) | |||
| pos = {key: value - middle for key, value in pos.items()} | |||
| for key, (x, y, z) in pos.items(): | |||
| @@ -16,10 +16,10 @@ class GraphState(object): | |||
| Internally it uses the same dictionary-of-dictionaries data structure as ``networkx``. | |||
| """ | |||
| def __init__(self, nodes=[], deterministic=False, vop="identity"): | |||
| def __init__(self, data=(), deterministic=False, vop="identity"): | |||
| """ Construct a ``GraphState`` | |||
| :param nodes: An iterable of nodes used to construct the graph, or an integer -- the number of nodes. | |||
| :param data: An iterable of nodes used to construct the graph, or an integer -- the number of nodes, or a ``nx.Graph``. | |||
| :param deterministic: If ``True``, the behaviour of the graph is deterministic up to but not including the choice of measurement outcome. This is slightly less efficient, but useful for testing. If ``False``, the specific graph representation will sometimes be random -- of course, all possible representations still map to the same state vector. | |||
| :param vop: The default VOP for new qubits. Setting ``vop="identity"`` initializes qubits in :math:`|+\\rangle`. Setting ``vop="hadamard"`` initializes qubits in :math:`|0\\rangle`. | |||
| """ | |||
| @@ -27,11 +27,20 @@ class GraphState(object): | |||
| self.deterministic = deterministic | |||
| self.adj, self.node = {}, {} | |||
| try: | |||
| for n in nodes: | |||
| self._add_node(n, vop=vop) | |||
| except TypeError: | |||
| for n in range(nodes): | |||
| self._add_node(n, vop=vop) | |||
| # Cloning from a networkx graph | |||
| self.adj = data.adj.copy() | |||
| self.node = data.node.copy() | |||
| for key, value in self.node.items(): | |||
| self.node[key]["vop"] = data.node[key].get("vop", clifford.by_name["identity"]) | |||
| except AttributeError: | |||
| try: | |||
| # Provided with a list of node names? | |||
| for n in data: | |||
| self._add_node(n, vop=vop) | |||
| except TypeError: | |||
| # Provided with an integer? | |||
| for n in range(data): | |||
| self._add_node(n, vop=vop) | |||
| def _add_node(self, node, **kwargs): | |||
| """ Add a node. By default, nodes are initialized with ``vop=``:math:`I`, i.e. they are in the :math:`|+\\rangle` state. | |||
| @@ -0,0 +1,61 @@ | |||
| """ | |||
| This is a sketch of a consistent language for defining resource states and lattices. | |||
| """ | |||
| import networkx as nx | |||
| from abp.fancy import GraphState | |||
| def union(*graphs): | |||
| """ Assumes that all graphs are completely independent and uniquely labelled """ | |||
| output = nx.Graph() | |||
| output.node = dict(i for g in graphs for i in g.node.items()) | |||
| output.adj = dict(i for g in graphs for i in g.adj.items()) | |||
| return output | |||
| def relabel(g, label): | |||
| """ Shorthand relabel """ | |||
| return nx.relabel_nodes(g, lambda x: (label, x)) | |||
| def fuse(psi, na, nb): | |||
| """ Deterministic fusion for testing purposes """ | |||
| neighbors_a, neighbors_b = psi.neighbors(na), psi.neighbors(nb) | |||
| new_edges = ((i, j) for i in neighbors_a for j in neighbors_b if i != j) | |||
| psi.add_edges_from(new_edges) | |||
| psi.remove_nodes_from((na, nb)) | |||
| return psi | |||
| def ghz(label): | |||
| """ A 3-GHZ state """ | |||
| psi = nx.Graph(((0, 1), (1, 2))) | |||
| return relabel(psi, label) | |||
| def microcluster(label): | |||
| """ A microcluster """ | |||
| psi = union(ghz(0), ghz(1), ghz(2)) | |||
| psi = fuse(psi, (0, 1), (1, 0)) | |||
| psi = fuse(psi, (1, 2), (2, 1)) | |||
| return relabel(psi, label) | |||
| def unit_cell(label): | |||
| """ A simple ring-like unit cell """ | |||
| psi = union(microcluster(0), microcluster(1), microcluster(2), microcluster(3)) | |||
| psi = fuse(psi, (0, (0, 2)), (1, (2, 2))) | |||
| psi = fuse(psi, (1, (0, 2)), (2, (2, 2))) | |||
| psi = fuse(psi, (2, (0, 2)), (3, (2, 2))) | |||
| psi = fuse(psi, (3, (0, 2)), (0, (2, 2))) | |||
| return relabel(psi, label) | |||
| def position(node): | |||
| print node | |||
| return {} | |||
| def annotate(g, f): | |||
| """ Annotate a graph """ | |||
| for node in g.nodes(): | |||
| g.node[node].update(f(node)) | |||
| if __name__ == '__main__': | |||
| psi = union(unit_cell((0, 0)), unit_cell((2, 0))) | |||
| annotate(psi, position) | |||
| g = GraphState(psi) | |||
| @@ -5,6 +5,7 @@ from abp import clifford | |||
| from abp.util import xyz | |||
| from mock import simple_graph | |||
| def test_json_basic(): | |||
| """ Test that we can export to JSON """ | |||
| g = simple_graph() | |||
| @@ -12,6 +13,7 @@ def test_json_basic(): | |||
| assert "adj" in js | |||
| assert "node" in js | |||
| def test_tuple_keys(): | |||
| """ Test that we can use tuple-ish keys """ | |||
| g = fancy.GraphState() | |||
| @@ -20,17 +22,24 @@ def test_tuple_keys(): | |||
| g.add_edge((1, 2, 3), "string") | |||
| json.dumps(g.to_json(True)) | |||
| def networkx_test(): | |||
| """ Test that fancy graph states really behave like networkx graphs """ | |||
| g = fancy.GraphState() | |||
| g.add_qubit(0, position = xyz(10, 0, 0)) | |||
| g.add_qubit(1, position = xyz(1, 0, 0)) | |||
| g.add_qubit(0, position=xyz(10, 0, 0)) | |||
| g.add_qubit(1, position=xyz(1, 0, 0)) | |||
| g.act_hadamard(0) | |||
| g.act_hadamard(1) | |||
| g.act_cz(0, 1) | |||
| g.copy() | |||
| # TODO: more tests here! | |||
| def test_from_nx(): | |||
| """ Test that making graphs from networkx objects goes smoothly """ | |||
| g = nx.random_geometric_graph(100, 2) | |||
| psi = fancy.GraphState(g) | |||
| assert psi.node[0]["vop"] == 0 | |||
| assert len(psi.edges()) > 0 | |||
| psi.measure(0, "px", detail=True) | |||
| psi = fancy.GraphState(nx.Graph(((0, 1),))) | |||
| @@ -3,6 +3,7 @@ import mock | |||
| import random | |||
| import numpy as np | |||
| from tqdm import tqdm | |||
| import networkx as nx | |||
| REPEATS = 100 | |||
| DEPTH = 100 | |||
| @@ -121,3 +122,12 @@ def test_stabilizer_state_multiqubit(n=6): | |||
| b = mock.circuit_to_state(mock.CircuitModelWrapper, n, circuit) | |||
| assert a.to_state_vector() == b | |||
| def test_from_nx(): | |||
| """ Creating from a networkx graph """ | |||
| g = nx.random_geometric_graph(100, 2) | |||
| psi = GraphState(g) | |||
| assert len(psi.node) == 100 | |||
| psi = GraphState(nx.Graph(((0, 1),))) | |||