@@ -1,13 +0,0 @@ | |||||
from anders_briegel import graphsim | |||||
from abp import clifford, qi | |||||
import itertools | |||||
import numpy as np | |||||
for i, j in itertools.product(range(4), range(24)): | |||||
operation, phase = clifford.conjugate(i, j) | |||||
vop_u = clifford.unitaries[i] | |||||
transform_u = clifford.unitaries[j] | |||||
u = np.dot(transform_u, np.dot(vop_u, qi.hermitian_conjugate(transform_u))) | |||||
#print u.round(2) | |||||
@@ -1,12 +0,0 @@ | |||||
from abp import GraphState | |||||
N = int(1e6) | |||||
g = GraphState() | |||||
g.add_nodes(xrange(N)) | |||||
for i in range(N): | |||||
g.act_hadamard(i) | |||||
for i in range(N): | |||||
g.act_cz(i, (i+1) % N) | |||||
@@ -1,16 +0,0 @@ | |||||
from abp.fancy import GraphState | |||||
from abp.util import xyz | |||||
import numpy as np | |||||
N = 100 | |||||
g = GraphState() | |||||
for i in range(N): | |||||
theta = 2*np.pi*i/30 | |||||
pos = xyz(5*np.cos(theta), 5*np.sin(theta), i/10.) | |||||
g.add_node(i, position = pos, vop=0) | |||||
for i in range(N): | |||||
g.act_cz(i, (i+1) % N) | |||||
g.act_local_rotation(i, 12) | |||||
g.act_local_rotation(i, 10) | |||||
@@ -1,21 +0,0 @@ | |||||
import abp | |||||
import numpy as np | |||||
from anders_briegel import graphsim | |||||
def wah(): | |||||
N = 10 | |||||
a = graphsim.GraphRegister(N) | |||||
for i in range(1000): | |||||
if np.random.random()>0.5: | |||||
j = np.random.randint(0, N-1) | |||||
a.hadamard(j) | |||||
else: | |||||
q = np.random.randint(0, N-2) | |||||
a.cphase(q, q+1) | |||||
a.print_stabilizer() | |||||
u = abp.GraphState(xrange(2)) | |||||
print u.to_stabilizer() |
@@ -1,23 +0,0 @@ | |||||
from abp.viz import VisibleGraphState | |||||
import numpy as np | |||||
import time | |||||
s = VisibleGraphState() | |||||
for i in range(100): | |||||
s.add_node(i, {"position": {"x":i, "y":i, "z":i}}); | |||||
s.update() | |||||
time.sleep(.5) | |||||
#for i in range(200): | |||||
#x = 10*np.cos(np.pi*2*i/60) | |||||
#y = 10*np.sin(np.pi*2*i/60) | |||||
#s.add_node(i, {"position": {"x":round(x, 2), "y":round(y, 2), "z":round(i/50., 2)}}) | |||||
#s.act_local_rotation(i, "hadamard") | |||||
#for i in range(200-1): | |||||
#s.act_cz(i, i+1) | |||||
#time.sleep(.3) | |||||
#s.update() | |||||
@@ -1,35 +0,0 @@ | |||||
from abp import clifford, qi, GraphState | |||||
from anders_briegel import graphsim | |||||
import numpy as np | |||||
import itertools as it | |||||
""" This is an example of where we get a discrepancy """ | |||||
def pete(): | |||||
a = GraphState(xrange(3)) | |||||
a.act_hadamard(0) | |||||
a.act_hadamard(1) | |||||
a.act_hadamard(2) | |||||
a.act_cz(0, 1) | |||||
a.act_cz(0, 2) | |||||
a.act_local_rotation(0, 1) | |||||
a.act_local_rotation(2, 3) | |||||
a.act_cz(1,2) | |||||
return a.adj_list() | |||||
def anders(): | |||||
b = graphsim.GraphRegister(3) | |||||
b.hadamard(0) | |||||
b.hadamard(1) | |||||
b.hadamard(2) | |||||
b.cphase(0, 1) | |||||
b.cphase(0, 2) | |||||
b.local_op(0, graphsim.LocCliffOp(1)) | |||||
b.local_op(2, graphsim.LocCliffOp(3)) | |||||
b.cphase(1,2) | |||||
b.print_adj_list() | |||||
pete() | |||||
anders() | |||||
@@ -1,32 +0,0 @@ | |||||
from abp import GraphState | |||||
from anders_briegel import graphsim | |||||
from abp import clifford | |||||
import random, difflib, re | |||||
from copy import deepcopy | |||||
def isequal(a, b): | |||||
""" TODO: Sketchy as you like. Remove this abomination """ | |||||
aa = a.get_adj_list() | |||||
bb = b.adj_list() | |||||
return re.sub("\\s", "", aa) == re.sub("\\s", "", bb) | |||||
clifford.use_old_cz() | |||||
N = 3 | |||||
a = graphsim.GraphRegister(N) | |||||
b = GraphState(range(N)) | |||||
previous_state, previous_cz = None, None | |||||
while isequal(a, b): | |||||
if random.random()>0.5: | |||||
j = random.randint(0, N-1) | |||||
a.hadamard(j) | |||||
b.act_hadamard(j) | |||||
else: | |||||
q = random.randint(0, N-2) | |||||
if a!=b: | |||||
a.cphase(q, q+1) | |||||
b.act_cz(q, q+1) | |||||