@@ -118,20 +118,27 @@ class GraphState(object): | |||||
def measure(self, node, basis, force=None): | def measure(self, node, basis, force=None): | ||||
""" Measure in an arbitrary basis """ | """ Measure in an arbitrary basis """ | ||||
basis = clifford.by_name[basis] | basis = clifford.by_name[basis] | ||||
old_basis = basis | |||||
ha = clifford.conjugation_table[self.node[node]["vop"]] | ha = clifford.conjugation_table[self.node[node]["vop"]] | ||||
basis, phase = clifford.conjugate(basis, ha) | basis, phase = clifford.conjugate(basis, ha) | ||||
assert phase in (-1, 1) # TODO: remove | |||||
# TODO: wtf | |||||
force = force ^ 0x01 if force != -1 and phase == 0 else force | |||||
#TODO: wtf | |||||
#force = force ^ 0x01 if force != -1 and phase == 0 else force | |||||
if force != None and phase == 0+0j: | |||||
force = not force | |||||
result = random.choice([0, 1]) | |||||
if which == clifford.by_name["px"]: | |||||
result = self.measure_x(node, result) | |||||
elif which == clifford.by_name["py"]: | |||||
result = self.measure_y(node, result) | |||||
elif which == clifford.by_name["pz"]: | |||||
result = self.measure_z(node, result) | |||||
else: | |||||
raise ValueError("You can only measure in PX, PY or PZ") | |||||
which = {1: self.measure_x, 2: | |||||
self.measure_y, 3: self.measure_z}[basis] | |||||
res = which(node, force) | |||||
res = res if phase == 1 else not res | |||||
if phase == 1: | |||||
result = not result | |||||
# TODO: put the asserts from graphsim.cpp into tests | |||||
return res | return res | ||||
def toggle_edges(a, b): | def toggle_edges(a, b): | ||||
@@ -142,14 +149,11 @@ class GraphState(object): | |||||
done.add((i, j), (j, i)) | done.add((i, j), (j, i)) | ||||
self.toggle_edge(i, j) | self.toggle_edge(i, j) | ||||
def measure_x(self, node, force=None): | |||||
def measure_x(self, node, result): | |||||
""" Measure the graph in the X-basis """ | """ Measure the graph in the X-basis """ | ||||
if len(self.adj[node]) == 0: | if len(self.adj[node]) == 0: | ||||
return 0 | return 0 | ||||
# Flip a coin | |||||
result = force if force != None else random.choice([0, 1]) | |||||
# Pick a vertex | # Pick a vertex | ||||
friend = next(self.adj[node].iterkeys()) | friend = next(self.adj[node].iterkeys()) | ||||
@@ -179,11 +183,8 @@ class GraphState(object): | |||||
return result | return result | ||||
def measure_y(self, node, force=None): | |||||
def measure_y(self, node, result): | |||||
""" Measure the graph in the Y-basis """ | """ Measure the graph in the Y-basis """ | ||||
# Flip a coin | |||||
result = force if force != None else random.choice([0, 1]) | |||||
# Do some rotations | # Do some rotations | ||||
for neighbour in self.adj[node]: | for neighbour in self.adj[node]: | ||||
# NB: should these be hermitian_conjugated? | # NB: should these be hermitian_conjugated? | ||||
@@ -197,11 +198,8 @@ class GraphState(object): | |||||
self.act_local_rotation(node, "msqz" if result else "msqz_h") | self.act_local_rotation(node, "msqz" if result else "msqz_h") | ||||
return result | return result | ||||
def measure_z(self, node, force=None): | |||||
def measure_z(self, node, result): | |||||
""" Measure the graph in the Z-basis """ | """ Measure the graph in the Z-basis """ | ||||
# Flip a coin | |||||
result = force if force != None else random.choice([0, 1]) | |||||
# Disconnect | # Disconnect | ||||
for neighbour in self.adj[node]: | for neighbour in self.adj[node]: | ||||
self.del_edge(node, neighbour) | self.del_edge(node, neighbour) | ||||
@@ -268,8 +266,10 @@ class GraphState(object): | |||||
output[a][b] = "Z" | output[a][b] = "Z" | ||||
else: | else: | ||||
output[a][b] = "I" | output[a][b] = "I" | ||||
# TODO: signs | |||||
return output | return output | ||||
def __eq__(self, other): | def __eq__(self, other): | ||||
""" Check equality between graphs """ | """ Check equality between graphs """ | ||||
return self.adj == other.adj and self.node == other.node | return self.adj == other.adj and self.node == other.node | ||||
@@ -9,12 +9,13 @@ And a circuit-model simulator | |||||
import numpy as np | import numpy as np | ||||
import itertools as it | import itertools as it | ||||
def hermitian_conjugate(u): | def hermitian_conjugate(u): | ||||
""" Shortcut to the Hermitian conjugate """ | """ Shortcut to the Hermitian conjugate """ | ||||
return np.conjugate(np.transpose(u)) | return np.conjugate(np.transpose(u)) | ||||
# Constants | |||||
ir2 = 1/np.sqrt(2) | |||||
# Constants | |||||
ir2 = 1 / np.sqrt(2) | |||||
# Operators | # Operators | ||||
id = np.array(np.eye(2, dtype=complex)) | id = np.array(np.eye(2, dtype=complex)) | ||||
px = np.array([[0, 1], [1, 0]], dtype=complex) | px = np.array([[0, 1], [1, 0]], dtype=complex) | ||||
@@ -22,23 +23,29 @@ py = np.array([[0, -1j], [1j, 0]], dtype=complex) | |||||
pz = np.array([[1, 0], [0, -1]], dtype=complex) | pz = np.array([[1, 0], [0, -1]], dtype=complex) | ||||
ha = hadamard = np.array([[1, 1], [1, -1]], dtype=complex) * ir2 | ha = hadamard = np.array([[1, 1], [1, -1]], dtype=complex) * ir2 | ||||
ph = np.array([[1, 0], [0, 1j]], dtype=complex) | ph = np.array([[1, 0], [0, 1j]], dtype=complex) | ||||
t = np.array([[1, 0], [0, np.exp(1j*np.pi/4)]], dtype=complex) | |||||
sqx = np.array([[ 1.+0.j, -0.+1.j], [-0.+1.j, 1.-0.j]], dtype=complex)*ir2 | |||||
msqx = np.array([[ 1.+0.j, 0.-1.j], [ 0.-1.j, 1.-0.j]], dtype=complex)*ir2 | |||||
sqy = np.array([[ 1.+0.j, 1.+0.j], [-1.-0.j, 1.-0.j]], dtype=complex)*ir2 | |||||
msqy = np.array([[ 1.+0.j, -1.-0.j], [ 1.+0.j, 1.-0.j]], dtype=complex)*ir2 | |||||
sqz = np.array([[ 1.+1.j, 0.+0.j], [ 0.+0.j, 1.-1.j]], dtype=complex)*ir2 | |||||
msqz = np.array([[ 1.-1.j, 0.+0.j], [ 0.+0.j, 1.+1.j]], dtype=complex)*ir2 | |||||
t = np.array([[1, 0], [0, np.exp(1j * np.pi / 4)]], dtype=complex) | |||||
sqx = np.array( | |||||
[[1. + 0.j, -0. + 1.j], [-0. + 1.j, 1. - 0.j]], dtype=complex) * ir2 | |||||
msqx = np.array( | |||||
[[1. + 0.j, 0. - 1.j], [0. - 1.j, 1. - 0.j]], dtype=complex) * ir2 | |||||
sqy = np.array( | |||||
[[1. + 0.j, 1. + 0.j], [-1. - 0.j, 1. - 0.j]], dtype=complex) * ir2 | |||||
msqy = np.array( | |||||
[[1. + 0.j, -1. - 0.j], [1. + 0.j, 1. - 0.j]], dtype=complex) * ir2 | |||||
sqz = np.array( | |||||
[[1. + 1.j, 0. + 0.j], [0. + 0.j, 1. - 1.j]], dtype=complex) * ir2 | |||||
msqz = np.array( | |||||
[[1. - 1.j, 0. + 0.j], [0. + 0.j, 1. + 1.j]], dtype=complex) * ir2 | |||||
# CZ gate | # CZ gate | ||||
cz = np.array(np.eye(4), dtype=complex) | cz = np.array(np.eye(4), dtype=complex) | ||||
cz[3,3]=-1 | |||||
cz[3, 3] = -1 | |||||
# States | # States | ||||
zero = np.array([[1],[0]], dtype=complex) | |||||
one = np.array([[0],[1]], dtype=complex) | |||||
plus = np.array([[1],[1]], dtype=complex) / np.sqrt(2) | |||||
zero = np.array([[1], [0]], dtype=complex) | |||||
one = np.array([[0], [1]], dtype=complex) | |||||
plus = np.array([[1], [1]], dtype=complex) / np.sqrt(2) | |||||
bond = cz.dot(np.kron(plus, plus)) | bond = cz.dot(np.kron(plus, plus)) | ||||
nobond = np.kron(plus, plus) | nobond = np.kron(plus, plus) | ||||
@@ -60,11 +67,12 @@ def normalize_global_phase(m): | |||||
class CircuitModel(object): | class CircuitModel(object): | ||||
def __init__(self, nqubits): | def __init__(self, nqubits): | ||||
self.nqubits = nqubits | self.nqubits = nqubits | ||||
self.d = 2**nqubits | |||||
self.d = 2 ** nqubits | |||||
self.state = np.zeros((self.d, 1), dtype=complex) | self.state = np.zeros((self.d, 1), dtype=complex) | ||||
self.state[0, 0]=1 | |||||
self.state[0, 0] = 1 | |||||
def act_cz(self, control, target): | def act_cz(self, control, target): | ||||
""" Act a CU somewhere """ | """ Act a CU somewhere """ | ||||
@@ -86,19 +94,18 @@ class CircuitModel(object): | |||||
output = np.zeros((self.d, 1), dtype=complex) | output = np.zeros((self.d, 1), dtype=complex) | ||||
for i, v in enumerate(self.state): | for i, v in enumerate(self.state): | ||||
q = i & where > 0 | q = i & where > 0 | ||||
output[i] += v*ha[q, q] | |||||
output[i ^ where] += v*ha[not q, q] | |||||
output[i] += v * ha[q, q] | |||||
output[i ^ where] += v * ha[not q, q] | |||||
self.state = output | self.state = output | ||||
def act_local_rotation(self, qubit, u): | def act_local_rotation(self, qubit, u): | ||||
""" Act a local unitary somwhere """ | """ Act a local unitary somwhere """ | ||||
where = 1 << qubit | where = 1 << qubit | ||||
output = np.zeros((self.d, 1), dtype=complex) | output = np.zeros((self.d, 1), dtype=complex) | ||||
for i, v in enumerate(self.state): | for i, v in enumerate(self.state): | ||||
q = i & where > 0 | q = i & where > 0 | ||||
output[i] += v*u[q, q] # TODO this is probably wrong | |||||
output[i ^ where] += v*u[not q, q] | |||||
output[i] += v * u[q, q] # TODO this is probably wrong | |||||
output[i ^ where] += v * u[not q, q] | |||||
self.state = output | self.state = output | ||||
def __eq__(self, other): | def __eq__(self, other): | ||||
@@ -108,12 +115,10 @@ class CircuitModel(object): | |||||
b = normalize_global_phase(other.state) | b = normalize_global_phase(other.state) | ||||
return np.allclose(a, b) | return np.allclose(a, b) | ||||
def __str__(self): | def __str__(self): | ||||
s = "" | s = "" | ||||
for i in range(self.d): | for i in range(self.d): | ||||
label = bin(i)[2:].rjust(self.nqubits, "0") | label = bin(i)[2:].rjust(self.nqubits, "0") | ||||
if abs(self.state[i, 0])>0.00001: | |||||
if abs(self.state[i, 0]) > 0.00001: | |||||
s += "|{}>: {}\n".format(label, self.state[i, 0].round(3)) | s += "|{}>: {}\n".format(label, self.state[i, 0].round(3)) | ||||
return s | return s | ||||
@@ -1,7 +1,10 @@ | |||||
import numpy as np | |||||
from abp import GraphState | from abp import GraphState | ||||
from abp import qi | |||||
from anders_briegel import graphsim | from anders_briegel import graphsim | ||||
def test_measurements(): | |||||
def test_single_qubit_measurements(): | |||||
""" Various simple tests of measurements """ | |||||
# Test that measuring |0> in Z gives 0 | # Test that measuring |0> in Z gives 0 | ||||
g = GraphState([0]) | g = GraphState([0]) | ||||
@@ -20,7 +23,9 @@ def test_measurements(): | |||||
g.act_local_rotation(0, "pz") | g.act_local_rotation(0, "pz") | ||||
assert g.measure(0, "px") == 1, "Measuring |-> in X gives 1" | assert g.measure(0, "px") == 1, "Measuring |-> in X gives 1" | ||||
# Test random outcomes | |||||
def test_random_outcomes(): | |||||
""" Testing random behaviour """ | |||||
ones = 0 | ones = 0 | ||||
for i in range(1000): | for i in range(1000): | ||||
g = GraphState([0]) | g = GraphState([0]) | ||||
@@ -28,6 +33,22 @@ def test_measurements(): | |||||
ones += g.measure(0, "pz") | ones += g.measure(0, "pz") | ||||
assert 400 < ones < 600, "This is a probabilistic test!" | assert 400 < ones < 600, "This is a probabilistic test!" | ||||
def test_projection(): | |||||
""" Test that projection works correctly """ | |||||
g = GraphState([0]) | |||||
g.act_local_rotation(0, "hadamard") | |||||
g.measure(0, "pz", 0) | |||||
print g.to_state_vector() | |||||
assert np.allclose(g.to_state_vector().state, qi.zero) | |||||
g = GraphState([0]) | |||||
g.act_local_rotation(0, "hadamard") | |||||
print g.to_state_vector() | |||||
g.measure(0, "pz", 1) | |||||
print g.to_state_vector() | |||||
assert np.allclose(g.to_state_vector().state, qi.one) | |||||
def test_z_measurement_against_ab(): | def test_z_measurement_against_ab(): | ||||