| @@ -1,61 +0,0 @@ | |||||
| """ | |||||
| This is a sketch of a consistent language for defining resource states and lattices. | |||||
| """ | |||||
| import networkx as nx | |||||
| from abp.fancy import GraphState | |||||
| def union(*graphs): | |||||
| """ Assumes that all graphs are completely independent and uniquely labelled """ | |||||
| output = nx.Graph() | |||||
| output.node = dict(i for g in graphs for i in g.node.items()) | |||||
| output.adj = dict(i for g in graphs for i in g.adj.items()) | |||||
| return output | |||||
| def relabel(g, label): | |||||
| """ Shorthand relabel """ | |||||
| return nx.relabel_nodes(g, lambda x: (label, x)) | |||||
| def fuse(psi, na, nb): | |||||
| """ Deterministic fusion for testing purposes """ | |||||
| neighbors_a, neighbors_b = psi.neighbors(na), psi.neighbors(nb) | |||||
| new_edges = ((i, j) for i in neighbors_a for j in neighbors_b if i != j) | |||||
| psi.add_edges_from(new_edges) | |||||
| psi.remove_nodes_from((na, nb)) | |||||
| return psi | |||||
| def ghz(label): | |||||
| """ A 3-GHZ state """ | |||||
| psi = nx.Graph(((0, 1), (1, 2))) | |||||
| return relabel(psi, label) | |||||
| def microcluster(label): | |||||
| """ A microcluster """ | |||||
| psi = union(ghz(0), ghz(1), ghz(2)) | |||||
| psi = fuse(psi, (0, 1), (1, 0)) | |||||
| psi = fuse(psi, (1, 2), (2, 1)) | |||||
| return relabel(psi, label) | |||||
| def unit_cell(label): | |||||
| """ A simple ring-like unit cell """ | |||||
| psi = union(microcluster(0), microcluster(1), microcluster(2), microcluster(3)) | |||||
| psi = fuse(psi, (0, (0, 2)), (1, (2, 2))) | |||||
| psi = fuse(psi, (1, (0, 2)), (2, (2, 2))) | |||||
| psi = fuse(psi, (2, (0, 2)), (3, (2, 2))) | |||||
| psi = fuse(psi, (3, (0, 2)), (0, (2, 2))) | |||||
| return relabel(psi, label) | |||||
| def position(node): | |||||
| print node | |||||
| return {} | |||||
| def annotate(g, f): | |||||
| """ Annotate a graph """ | |||||
| for node in g.nodes(): | |||||
| g.node[node].update(f(node)) | |||||
| if __name__ == '__main__': | |||||
| psi = union(unit_cell((0, 0)), unit_cell((2, 0))) | |||||
| annotate(psi, position) | |||||
| g = GraphState(psi) | |||||