|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- # abp
-
- Python port of Anders and Briegel' s [method](https://arxiv.org/abs/quant-ph/0504117) for fast simulation of Clifford circuits. You can read the full documentation [here](https://peteshadbolt.co.uk/abp/).
-
- ![demo](examples/demo.gif)
-
- ## Installation
-
- Install with `pip`:
-
- ```shell
- $ pip install --user abp
- ```
-
- Or clone and install:
-
- ```shell
- $ git clone https://github.com/peteshadbolt/abp.git
- $ python setup.py install --user
- ```
-
-
-
- ## Visualization
-
- `abp` comes with a tool to visualize graph states in a WebGL compatible web browser (Chrome, Firefox, Safari etc). It uses a client-server architecture.
-
- First, run `abpserver` in a terminal:
-
- ```shell
- $ abpserver
- Listening on port 5000 for clients..
- ```
- Then browse to `http://localhost:5001/` (in some circumstances `abp` will automatically pop a browser window).
-
- Now, in another terminal, use `abp.fancy.GraphState` to run a Clifford circuit:
-
- ```python
- >>> from abp.fancy import GraphState
- >>> g = GraphState(10)
- >>> g = GraphState(range(10))
- >>> for i in range(10):
- ... g.act_hadamard(i)
- ...
- >>> g.update()
- >>> for i in range(9):
- ... g.act_cz(i, i+1)
- ...
- >>> g.update()
- ```
-
- And you should see a visualization of the state:
-
- ![demo](examples/viz.png)
-
- ## Testing
-
- `abp` has a bunch of tests. You can run them all with `nose`:
-
- ```shell
- $ nosetests
- 53 tests run in 39.5 seconds (53 tests passed)
- ```
-
- Currently I use some reference implementations of `CHP` and `graphsim` which you won't have installed, hence some tests will fail with `ImportErrors`. You can ignore those.
|