|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455 |
- cphase (vertex a, vertex b):
- if ngbh a\{b} =/= {}:
- remove VOP (a, b)
- end if
- if ngbh b\{a} =/= {}:
- remove VOP (b, a)
- end if
- [It may happen that the condition in line 2 has not been fulfilled then, but is now due to the effect of line 5. So we check again:]
- if ngbh a\{b} =/= {}:
- remove VOP (a, b)
- end if
- [Now we can be sure that the the condition (ngbh c\{a, b} = {} or VOP[c] ∈ Z) is fulfilled for c = a, b and we may use the lookup table (cf. Eq. (9)).]
- if {a, b} ∈ E :
- edge ← true
- else:
- edge ← false
- end if
- (edge, VOP[a], VOP[b]) ← cphase_table[edge, VOP[a], VOP[b]]
-
-
- remove_VOP (vertex a, vertex b):
- [This reduces VOP[a] to I, avoiding (if possible) to use b as swapping partner.]
- [First, we choose a swapping partner c.]
- if ngbh a\{b} = {}:
- c ← any element of ngbh a\{b}
- else:
- c←b
- end if
- d ← decomposition lookup table [a]
- [c contains now a decomposition such as Eq. (7)]
- for v from last factor of d to first factor of d
- if v = −iX:
- local complementation (a)
- else: ( this means that v = iZ)
- local complementation (b)
- end if
- [Now, VOP[a] = I.]
-
-
- local complementation (vertex a)
- [performs the operation specified in Definition 4]
- nv ← ngbh v
- for i ∈ nv :
- for j ∈ nv :
- if i < j:
- if (i, j) ∈ E:
- remove edge (i, j)
- else:
- add edge (i, j)
- end if
- end if
- end for
- VOP[i] ← VOP[i]sqrt(−iZ)
- VOP[v] ← VOP[v]sqrt(iX)
- end for
|